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PPFFACE 

In this report we present the results of our efforts 
towards an alqorithaic treatment of several problems related to 
normalization in relational data base schemas. Our goal was to 
find efficient algorithms for the solution of these problems. The 
problems we treat are: Synthesizing a third normal form schema 
from a set of functional dependencies, deciding the membership 
problem for functional dependencies, synthesizing a Boyce-Codd 
normal form schema from a set of functional dependencies a nd 
finding all keys of a given relation. The first problem is 
treated in part I, the second problem is treated in part II, and 
the last two problems are treated in part III. 

The notion of normalization in relational data bases was 
presented by Codd shortly after he introduced the relational 
model. Attributes in a relational schema may be related by 
various relationships. One type of relationship is the functional 
dependency. It was found that if attributes in a relation are 
related by functional dependencies in certain ways, then various 
problems such as update anomalies may arise. Normalization was 
offered as a solution to this problem. As presented originally it 
was an ad hoc procedure. The relational schema was assumed to be 
given. If undesirable functional dependencies existed in a 
relation of the schema then the relation was decomposed into two 
or more relations in which the problem did not exist. The process 
was repeated until no problem functional dependencies existed in 
any relation; then the schema was said to be in third normal 
form. 

The functional dependency has an important role in 
definition and construction of normalized relational schemas, 
is also an important concept in the modeling of the semantic 
relational data bases. It has, therefore, been suggested that 
might be more appropriate to start the construction of a sc 
with a set of functional dependencies. The relations of 
schema would then be synthesized from the given functi 
dependencies. The success of this approach lies in the exist 
of a suitable synthesis algorithm. Such an algorithm sh 
produce a schema that represents the information embodied in 
given set of functional dependencies and is in third normal f 
It should also be efficient enough to be used in real 
situations. 
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synthesis algorithm based on these properties was prese 
there. However, examples were given of cases where 
algorithm produced non-normalized schemas. These examples a 
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In the first part of this report we present a synthesis 
algorithm which, to our knowledge, is the first to satisfy the 
goals described above. The synthesized schema represents (in a 
precisely defined way) the information contents of the original 
set of functional dependencies, it is provably in third normal 
form and , furthermore, it contains the minimal number of 
relations among all possible schemas. At the end of part II we 
present an efficient implementation of this algorithm. Therefore, 
we believe that this algorithm is a satisfying solution to the 
synthesis problem. 

A possible reason why all the previous algorithms have 
failed is that the problem was not specified precisely. In 
particular, one need to know what is the exact relationship 
between the original set of functional dependencies and the 
resulting schema. We define here what it means for a schema to 
represent the information content of a set of functional 
dependencies. In Codd*s papers on normalization functional 
dependencies were considered as information external to the 
schema. For us this posed a problem since we do not know of any 
relational system in which functional dependencies can be 
defined. The concept of representation offers a solution to this 
orohlem; functional dependencies are now part of the schema and 
need not he defined separately. We believe that this notion of 
representation will prove to be useful in the theory of 
relational schemas. 

A basic operation which is used many times in the 
synthesis algorithm is to check if a given functional dependency 
can be derived from other functional dependencies. We call this 
operation the membership test. In the second part of the paper we 
present an algorithm for the membership test that works in linear 
time. rising this algorithm, we present a quadratic time 
i mple m'^n ta tion of the synthesis algorithm. We doubt if a 
significant improvement on this time bound is possible. Also, 
using a known relationship between functional dependencies and 
the propositional calculus we show that the membership algorithm 
can be used to decide tautologihood for a restricted class of 
propositional formulas in linear time. (The last result is not 
connected to the rest of the report.) 

The results in the first two parts indicate that the 
algorithmic approach to the construction of relational schemas is 
quite successful. This success seems to be based on the use of 
the algebra of functional dependencies. Motivated by this 
success, we tried to analyze two other problems of relational 
schemas which can be formulated in terms of functional 
dependencies. These problems are the construction of Boyce-Codd 
ncrraal form schemas and the computation of all keys of a 
relation. 

The normal form we have been using is the one called in 
the literature third normal form. A stronger normal form, called 
Boyce-Codd normal form, was introduced in [8]. One might want to 
know if our synthesis algorithm would produce schemas in Boyce- 
Codd normal form. We show that it is not so. There are sets of 
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functional dependencies that cannot be represented by Boyce-Codd 
normal form schemas* Also, even when a Boyce-Codd normal form 
schema exists for a set of functional dependencies, the algorithm 
may produce a non-Boyce-Codd normal form schema. Clearly, the 
problem of deciding if a given schema is in Boyce-Codd normal 
form is algorithmically solvable. However, we prove that the 
problem is NP-complete. These results suggest that a feasible 
algorithm (that is, an algorithm that runs in polynomial time) 
for synthesi2:ing Boyce-Codd normal form schemas does not exist. 

A key of a relation is a minimal subset o f its 
attributes such that all other attributes of the relation are 
dependent on it. The synthesis algorithm produces for each 
relation one or more keys. We present examples where additional 
(non-synthesi2ed) keys exist in relations. Several alqori^-hros 
have been described in the literature for the computation of all 
keys of a relation. However, they are all slow -- they may take 
exponential time in the worst case. We prove that the problem of 
whether additional keys exist in a given relation is NP-complete 
and explain why this result implies that an efficient key finding 
algorithm probably does not exist. 

The report is organized in three parts which are, to 
some extent, independet. It is possible to understand the results 
of one part without having to read first the other parts. 
However, sections 1,2 and 1.4 contain basic material which is 
essential to the understanding of all three parts and should, 
therefore, be read before part II and Part Til. 

The work reported here was done during the first half of 
1976. The first part is an extension and an improvement of the 
results in chapters 2,5 of [2], It will be published shortly in 
the ACH Transactions On Database Systems, 
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PAST I THE SYNTHESIS PROBLEM 

T.1 INTPODHCTION 

Fes ea rch on th e relatio na 1 data base mod el h as s hown 
t hat the function al r elat ionship is an importan t conce pt when 
c onsi deri ng ho w to group attributes into r elat ions 

[ ^,7, 9,10 , 15 ,17]. It has been prop osed by some that t h e b asic 
d escr ipt i on of a da ta b ase can be formulated pu rely a s a se t of 
s uch f unc tional r elat ionships from which the re lational sc hema 

c an be syn thesi zed algo rithfflicall y [3, 17]. It i s our pu rp os e in 
r his part of t he pape r to develop a provably soun d and e f fee t ive 

P roce dure f or s y nth esiz ing relat ions satisfyi ng Codd ' s t bird 
n orma 1 fo rm from a gi ven set of fun ct ion al relat ionshi ps # A Iso, 
t he sc he ma synth Gsiz ed b y our proc ed u re will be shown to c on tain 
a min i ira 1 nu m her of r ela t ions. 

This method assumes the existence of at most one 
functional relationship connecting any one set of attributes to 
another. This uniqueness assumption, which is required by all 
earlier methods as well, raises difficult semantic questions that 
will be discussed in de+ail. 
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I.2 THE HELAIIONAL MODEL 

1.2.1 Relations 

In Codd's relational data base model, mathemat 
relations over a set of domains are used to describe connect 
among data items [6], However, not ail relations serve equ 
well in describing these connections [7]. To "judge the effi 
of various classes of relations, we begin by reviewing 
terminology associated with the relational model. 

Conceptually, a relation is a table in which each co 
corresponds to a distinct at tribute and each row to a dist 
er.ti;t;y (or tu£le) . For each attribute there is a set of poss 
associated values, called the domain of that attribute. It 
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common for different attributes to share a single domain. For 
example, the attributes 0nANTITY_IN_STOCK and SIZE_OF_CLASS both 
assume values from the domain called NON-NEGATIVE INTEGERS. 

An <entity, attribute> entry in a relation is a value 
associated with the entity chosen from the domain of the 
attribute. Formally, a relation is a (finite) subset of the 
cartesian product of the domains associated with the relation*3 
attributes. 

The notation for describing the structure of a data base 
relation includes a relation name (say R) and a set of attributes 
in R (say (A1, A2, ..., An}), and is written: R(A1, A2, ..., An), 
e.g., see fig. la. The ordering of attributes is immaterial, 
since attribute names are distinct within a relation. (This is 
one reason for distinguishing between attributes and domains.) 
Notationally, we will use upper case letters near the beginning 
of the alphabet for simple (i.e., singleton) attributes (e.g.. A, 
E, C) and ones near the end of the alphabet for composite (i.e., 
groups of) attributes (e.g., X, Y, Z) . 

The set of entities that comprise a relation normally 
changes over time, as entities are inserted, deleted, and 
modified. This is one important way that data base relations 
differ from mathematical relations. 

The word "relation" is often used in the literature to 
describe both the structure of the relation (e.g., R (A 1,..,,An)) , 
called its intention, which is static, and the set of tuples in 
the relation, called its extension. In the sequel, the word 
"itiil tefer to an intention unless ex2licitly stated 

i§® • That is, we will usually be referring to the 
structure of a relation, rather than the set of tuples 
t hemselves. 

T . 2. 2 Function^ Dependencies 

As we will see in later sections, it is important to 
consider functional relationships when choosing how to group 
attributes into relations. Functional relationships among data 
base attributes are formalized in the concept of functional 
dependency. 

Let A and B be attributes, let DOM (A) be the domain of A 
and DOM(3) be the domain of B, and let f be a time-varying 
function such that f:DOM (A)->DOM(B). f is not a function in the 
precise mathematical sense, because we allow the extension of f 
to vary over time in the same sense that we allow extensions of 
data base relations to change over time. That is, if f is thought 
of as a set of ordered pairs {(a,b) ) a e DOM(A) and b € DOM(B)}. 
then at every point in time for a given value of a e DOM (A) ther-^ 
will be at most one value of b € DOM(B), To distinguish f from 
mathematical function, we call f a functional dependency (abbr. 
FD). For notational convenience, we generally leave out the 
"DOM"s and write f:A->B. If there is an FD f:A->B, then B is said 
to be functionally dependent on A. 
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Figure 1 

Functiopal Dependencies 

(a) An example of a relational schema 

EMPLOYEE (EMP£r NAME, DEPT#) 

DEPAPTMENT (DEPT#, MGP#) 

INVENTORY (STOCKDEPT#, QTY) 

(b) Functional dependencies for the above schema 

EMP# -> NAME 

EMP# -> DEPT# 

DEPT# -> MGP# 

STOCK#, DEPT# -> QTY 
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The above definitions are generalized in the obvious way 
for functional dependencies over compound attributes. If X = 
fA1,.,.,An} and Y = are sets of attributes, then f:X 
-> Y means f:DOM(A 1) x...xDOM(An) -> DOM(B1)x...xDCM (Bm). He will 
normally leave off the set notation in FDs and write 
f: {A1,...,An} -> simply as f:A1,...,An -> 
As an example, the functional dependencies for attributes in 
figure la are given in figure 1b. 

In this paper we will assume that for any two sets of 
attributes X and Y, there is at most one FD X -> Y. At tributes 
may need to be renamed to guarantee this assumption. This 
restriction is an important one, and will be discussed in detail 
in section 4,2. He will also show later that nonfunctional 
relationships need not satisfy this uniqueness assumption. 

Given this assumption, if f:A->B, then we will 
frequently write A->B as an abbreviation. The notation A/>B 
means that there is no FD A -> B that is of interest (although at 
a given point in time in some relation, it may be true that no 
value of A has more than one corresponding value of P). 

Let R(A1,,.,,Aa) be a relation and let X be a subset of 
{A1,...,An}, X is called a key of R if every attribute in 
f.A1,..,,An} that is not in X is functionally dependent upon X and 
if no subset of X has this property. Clearly, a relation can have 
many keys. A su^erke^ of P is any set of attributes in R that 
contains a key of E, (Every key is also a superkey.) The concept 
of superkey is introduced mainly to simplify our proofs in later 
sections. 

1.2.3 Operations on delations 

In his original description of the relational model, 
Codd introduced the relational algebra as a data manipulation 
language for the relational data base model [6}. There are two 
basic relational algebraic operations that will be of some 
interest to us: projection and join. 

The projection of the extension of a relation, R, on a 
subset of its attributes, X, is the set of tuples obtained by 
excising those attributes not in X. If two tuples are now 
indistinguishable because they only differed in the attributes 
that were eliminated, then they are "merged" into a single tuple. 
That is, the result of the projection must be a subset of the 
cartesian product of the domains associated with the attributes 
of X. 

The join operation is used to make a connection between 
attributes that appear in different relations. The only joi* 
operation we will consider here is the natural join (i.e. 
equality join). The natural join of the extension of a relatio 
P (A,E) with the extension of relation S (B,C) on domain B, denoted 
?*S, is defined to be {(a,b,c) | (a,b) e R and (b,c) 8 S}. That 
is, it links together all values of A and C that are related to 
common B values. 



a) 
■r

^
 

8 

1.2.4 Schemas 

The purpose of any 
is to all ow the user of t he 
t h ose re lationships amo ng 
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First, relation-valued domains are excluded from 
s. A relation is in first normal form (abbr. INF) if 
omain contains simple values. There are two main 
es to INF [6]. First, it allows the data base to be 

as a collection of tables -- a very simple and 
ndable structure. Second, it permits the definition of a 
class of primitive operators that are capable of 
ting relations to obtain all necessary logical 
ons among attributes. 

The second and third normal forms are introduced to 
problems caused by certain functional dependencies. To 

these problems, consider the relation 
(STOCK#^ DIPT#, QTY, MGR#) obtained by joining the 
NT and INVENTORY relations of fig. la on the attribute 

The insertion of the first inventory item for a 
ar DEPT# into the extension of DEPT_INV creates a new 
on betweeen that DEPT# and its MGR#. The deletion of the 
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last inventory item for a particular DEPT# loses the connection 
between that DEPT# and its HGRt. These side effects, called 
insertion"deletion anomalies, only occur when the first or last 
tuple of a DEPT# is inserted or deleted. Also, the repetition of 
the connection between a DEPT# and its WGfi# for each STOCK# in 
the DEPT# can lead to an inconsistent relation if arbitrary 
updates on individual tuples are permitted. These problems arise 
because MGR# is functionally dependenct on only part of the key 
STOCK#, DEPT#. To eliminate these problems from DEPT_INV, 
DEPT_INV must be put into second normal form. 

A partial dependency occurs when an attribute is 
functionally dependent upon a subset of a set of attributes. Let 
f:A1,...,An->B and g;A1,...,Am->E be functional dependencies 
where m<n. The attributes Am+1, Am<-2, ..., An are extraneous in 
f, since A1, ..., Am are sufficient to functionally determine B. 
In this case, B is said to be partially dependent on A1,...,An. 
If for a given f there is no g with the above property, then R is 
fully dependent on A1,...,An. That is, there are no extraneous 
attributes in the domain of f. 

If an attribute Ai appears in any key of R then it is 
said to be prime in P. Otherwise, it is nonprime in R. A 
relation is in second normal form (abbr. 2NF) if it is in INF and 
each of its nonprime attributes is fully dependent upon every key 
[7]. The relation DEPT_INV (STOCK#^DEPT#, QTY, MGR#) is not in 
2NF, because MGR# is a nonprime attribute and is partially 
dependent on the key STOCK#, DEPT#. The relations DEPT and 
INVENTORY in fig. la are in 2NF. 

Consider now the relation EMP_DEPT (EMP#, NAME, DEPT#, 
MGR#) obtained by joining the EMPLOYEE and DEPARTMENT relations 
of fig. 1a on DEPT#. Although EMP_DEPT is in 2NF, it displays 
the same problems as DEPT_INV. Inserting or deleting the first 
EMP# in a particular DEPT# creates an anomaly, for a DEPT#-MGR# 
connection is created or destroyed in the process. The 
repetition of the DEPT#-MGB# connection for each EMP# in the 
DFPT# creates the same consistency problem as in DEPT_INV. In 
this case, the problems arise because MGR# is functionally 
dependent on the key EMP# via the attribute DEPT#. To eliminate 
the problems, the relations EMP_DEPT must be put into third 
normal form. 

Let P(A1,...,An) be a relation. An attribute, Ai, is 
tdependent upon a set of attributes, X, if there 
exists a set of attributes, Y c (A1,...,An}, such that X -> Y, Y 
/> X, and Y -> Ai with Ai not an element of X or Y. 

A relation is in third normal form (abbr. 3NF) if none 
of its nonprime attributes are transitively dependent upon any 
key [7]. A 3NF relation is also in 2NF; for if an attribute Ai 
is partially dependent on a key X, then Ai is transitively 
dependent on X, since X -> X*, X’ /> X, and X' -> Ai for some X* 
c X. The relation EMP_DEPT is not in 3NF, because MGR# is 
nonprime and is transitively dependent upon the key EMP#. All of 
the relations in figure la are in 3NF (and hence 2NF), given the 
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FDs cf figure 1b. Further examples of normal form relations and 
surrounding problems can be found in [6,7,9], 

I.3 SYNTHESIZING A RELATIONAL SCHEKA 

1.3,1 The Sjrn thesis Problem an^ Nonfunctiona 1 Relationshi ps 

Codd sh 
to a INF relation 
be split up int 
the FDs [7], In 
completely deter 
could choose the 
from them. In a 
technique was pre 
In this part o 
then discuss prop 

owed that by applying si 
in which the FDs were k 

o a set of relations in 
[3], it was propose 

mine whether or not a 
FDs as the basic concept 
dvancing this proposal, 
sen ted to actually const 
f the paper we present a 
erties of schemas synthe 

mple decomposition steps 
nown, the relation could 
3NF that embodies all of 
d that since the FDs 
relation is in 3NF, one 
and build 3NF relations 

an efficient algorithmic 
ruct relations from FDs. 
n improved algorithm and 
sized by this algorithm. 

The approach of building a relational schema from FDs 
r^sts entirely on the ability to represent all data relationships 
as FDs. Clearly, though, not every logical connection in the 
world is functional. Nevertheless, we claim that all connections 
among attributes in a data base description can be represented by 
FDs. As long as connections are functional there is of course no 
problem. Nonfunctional connections require special treatment. 

A nonfunctional 
■^tributes A1, A 2,,.., An will 
:A1,A2,.,,,An -> 6. 6 is a 
oes not appear in any o 

nonfunctional relationship h 
undorlyinq domain for all of 
^or each element (a1,a2,.. 
f(a1,a2,...,an) = 1 if and o 
under f. Thus, the exte 
nonfunctional relationship 
nonfunctional relationship be 
each AUTCNOBILE can be driven 
DFIVEP can drive more than o 
FD: DRIVEF,ADTONOBILE -> 61. 

connection, f, among a group of 
be represented as the following FD: 
n attribute that is unique to f; it 
ther FD. Each FD representing a 
as its own private © attribute. The 
these 6 attributes is the set {0,1}. 
.,an) e Don(A1) xDOM{A2)X...xDOM(An) , 
nly if (a1 ,a2 , ..,,an) is related 
nsion of f completely defines a 
among A1,,.,,An. For example, a 
tween a DRIVER and AUTOHOBILE, where 

by more than one DRIVER and each 
ne AUTOMOBILE, is represented by the 

Notice that more than one nonfunctional relationship can 
exist among a set of attributes without violating the uniqueness 
assumption of FDs. For example, we can have a second relationship 
between DRIVER and AUTOMOBILE that indicates ownership; 
DRIVER,AUTOMOBILE -> 62, By assigning a unique © to each 
nonfunctional relationship, the uniqueness assumption for FDs is 
retained. 

This 6 notation allows us to represent all nonfunctional 
relationships as FDs. The synthesis algorithm will produce 
approximately one relation for each of these nonfunctional 
relationships. In section 5, we will show precisely how each of 
these "nonfunctional FDs" becomes embodied in the synthesized 
relational schema. 



1.3.2 Formalizing the Synthesis Problem 

Although the motivation for the synthesis problem is 
from data base management, one can formalize the problem in 
purely symbolic terms as follows. We are given a set, S, of 
symbols (i.e., attributes) and a set, F, of mappings of sets of 
symbols into symbols (i.e,, FPs). The problem is to find a 
collection C = fC1,...,Cm} of subsets of S (i.e., a collection oi 
relations) and for each Ci a collection of subsets of Ci (i.e., a 
collection of keys for each relation) satisfying three 
properties: First, F is ''embodied" in C (i.e., the relations 
embody the qiven FDs), Second, each Ci can have no transitive 
dependencies (i.e., it is in 3NF). Third, the cardinality of C 
is minimal. 

This treatment of the problem is still somewhat fuzzy, 
since we have not yet discussed the algebraic rules for composing 
FDs. To motivate the need for these rules, we present a simple 
synthesis algorithm. This algorithm ignores algebraic 
considerations and will be shown to be inadeguate. 

1.3.3 A Simpl^e Synthesis Procedure 

One (overly) simple way to obtain relations from a given 
set of FDs is to group together all a ttributes that are 
functionally dependent upon the same set of attributes. This 
suggests the following procedure. First, partition the given set 
of FDs into groups such that all of the FDs in each group have 
identical left sides. Then, for each group construct a relation 
consisting of all the attributes appearing in that group. The 
If^ft side of the FD in each group is a key of the corresponding 
relation. For example, see figure 2, 

Several undesirable properties of this method can be 
seen in the example. First, the synthesized relations are not in 
3NF, For example, in relation FI of fig. 2, C is transitively 
dependent on the key A. In F4, P is partially dependent on the 
key AE, The unnormalized relations are due to redundancnss in 
the given set. of FDs. We will see later that f2 is redundant and 
that F is an extraneous attribute in f6. 

Second, the left sides of FDs are not necessarily keys 
of the relations, although they are always superkeys. In FU, AEF 
is a superkey but not a key, since B is extraneous. 

Third, this procedure synthesizes too many relations. 
Since fU and f5 are inverses of each other, the relation 33 is 
extraneous. This results from a failure of the procedure when 
constructing P2 to recognize D as a second key by virtue of f5, 
rather than to put f5 into a separate relation. 

To solve these problems, we must first formalize the 
concept of a redundant FD. We will then return to a pres-^ntation 
of a synthesis algorithm that overcomes the above difficulties. 
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Figure 2 

^ Schema from FDs 

Wg are given the following set of FDs: 

f1: A -> B 

f2: A -> C 

f3: B -> C 

f4: B -> D 

f5: D -> B 

ff: ABF -> F 

We group the FDs according to common left hand sides, obtaining 

three groups; 

gi = ffi,f2) 

g2 = (f3,fU} 

g3 = {f5} 

g4 = {f6} 

For each group we construct a relation consisting of all of 

the attributes in the group: 

B 1 (A,B,C) 

R2 (B,C,D) 

B 3 (D,B) 

B4 (A^E,B,F) 

where the underscored attributes are keys. 



13 

1.4 THE ALGEBRA AND SEMANTICS OF FUNCTIONAL DEPENDENCIES 

1.4.1 Armstrong's Axiomatization of Functional Dependencies 

The complete axiomatization of FDs given by Armstrong 
fl] provides a theoretical background to the study of the algebra 
of FDs that is treated in later sections, Armstrong shows that if 
a given set of FDs exist in (the extension of) a relation, then 
any FDs that can be derived from the given set using the axioms 
must also exist. Armstrong presents several equivalent 
axiomatizations of FDs. The one we will use is based on 
properties of FDs proved by Delobel and Casey [ 10]. They are: 

A1. (reflexivity) X -> X 

A2. (augmentation) if X -> Z then X+Y -> Z 

A.3. (pseudotransitivity) if X -> Y and Y+Z -> w then 
X+Z -> W 

where the symbol means "set union" (of not necessarily 
disjoint sets). 

If R(A,B) is a relation, then axiom A1 can be applied 
with X=fA,B} to show that A,B -> A,B or with X= (A) to show 
that A -> A. 

The meaning of A2 is simply that if f:X -> Z, then one 
can create another FD, g, where the domain of g includes X as 
well as some other extraneous attributes, Y, whose values have no 
effect on the value of Z selected by g. So, knowing that -> A, 
we can obtain A,B -> A (i.e., X= (A) , Z= (A), and Y-{3}) . 

Axiom A3 is a substitution rule for composing FDs. Let 
f:X -> Y and g:Y+Z -> W. The axiom claims that there is an h:X+Z 
-> W. To see where h comes from, consider the application of h 
to a given x € DOM (X) and z e DOM (Z) in two steps. First, f is 
applied to x, yielding a unique y € DOM(Y), Second, q is applied 
to y and z, yielding a unique w e DOM(W), and thereby completing 
the application of h. Symbolically, we can say h(x,z) is defined 
to be g(f(x),z). Also, note that in the statement of axiom A3 if 
Z is the null set, then pseudotransitivity becomes simple 
transitivity. 

Let G be a set of FDs. The closure of G, denoted G+, is 
defined to be the smallest superset of G that is closed under A1, 
A2, and A3. For a given G, G-*- can be shown to be unique. By 
Armstrong's theory we know that if G is a given set of FDs for a 
relation R, then each FD in G-*- also exists in R. 

An FD g e G is redundant in G if G-*- = (G-{g})+. H is a 
nonredundant covering of a given set of FDs, G, if G*-=H-'- and H 
ccntains no redundant FDs. 
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An important property of FDs that will be used later to 
prove a number of theorems is stated in lemma 1. It is based on 
the concept of a ••derivation”, which we will informally consider 
to be a series of applications of Armstrong’s axioms on a given 
set of FDs. A formal development appears in part II, 

Lemma J[; Let G be a set of FDs, and let g:X -> Y be an FD in G. 
If h:V -> W is in G-*- and g is used for some derivation of h from 
G, then V -> X is in G+. 

£.1221 give here an intuitive argument usina an informal 
notion of a derivation. A formal proof using the ’’derivation 
tree” model of derivations is given in section II.1.2 

We introduce the notation U ==> Z to mean that the FD u 
-> Z can be derived by an application of one of Armstrong’s 
axioms on a given set of FDs. The notation U =*=> Z means that U 
-> Z is derivable using several applications of the axioms. Now, 
the lemma states there is a derivation V =♦=> W using g. That 
is, there is a derivation V =♦=> ZX -=> ZY =♦=> w for some 
(possible empty) set of attributes Z (the step ZX ==> ZY is the 
step that uses g), But V =♦=> ZX implies V -> ZX, which implies 
V -> X, thereby proving the lemma, a 

1.4,2 Uniaueness and the Semantics of FDs 

The treatment of FDs in this paper is a strictly 
syntactic one based on Armstrong’s axioms. To use this approach, 
w-^ must make the following assumption of uniqueness: for a given 
set of FDs G and an FD X -> Y, either X -> Y is not in G*- or 
there exists a unique FD X -> Y in G’-. That is, if there are +wo 
FDs on the same set of attributes, then they are the same FD; if 
f:X -> Y and g:X -> Y then f is identical to q. Thus, the set 
of FDs that are accepted as input to the synthesis algorithm is 
assumed to satisfy not only Armstrong’s axioms, but also the 
uniqueness assumption. (Both of these assumptions are also 
required for all previous syntactic approaches to 3NF (e.g., 
[10,15,17]).) That this uniqueness assumption is quite strong can 
be seen from several examples. 

Let f1:DEPT# -> MGR# and f2:MGB#,FLOOR -> 
NUMBFP_oF_EMPLOYFES. One interpretation of f1 and f2 is that f1 
determines the manager of each department and f2 determines the 
number of employees wor king for a pa rticular manager on a 
particular floor. By applying pseudotransitivity to f1 and f2 we 
obtain f 3 : DEPT#, FLOOR -> NnMBER_0F_Ef1PL0YEES, which determines 
the number of employees of the manager of a particular department 
on a particular floor, If a manager can manage more than one 
department, then f3 is not the same as the syntactically 
identical FD g1:DEPT#,FLOOF -> NUMBER_OF_EMPLOY EES, which 
determines the number of employees of a particular department on 
a particular floor. To make g1 distinct from f3, one has to 
change an attribute name to make the FDs syntactically distinct. 
Fcr example, one could change f2 and g such that f2:MGP#,FLOGR -> 
NUHBEH_OF_EMPLOYEFS_OF_HANAGEF and g1:DEPT#,FLOOP -> 
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NfJ«BEF_OF_EMPLOYEES_OF_DEPT. Now, g1 is distinct from the 
composition of f1 and f2. 

As a second example, let f4;EMP# -> MGR# and f5:nGR# -> 
EMP#. It must be the case, here, that fU is the inverse of f5. 
For if we compose fU and f5, we obtain g2:EMP# -> EKP#. Since 
th=»re is only one FD connecting EMP# to EMP# (by our assumption), 
and since by Armstrong's axioms the identity function must exist, 
then g2 must be the identity map. This implies fU = f5“'. If wo 
take the interpretation that fU maps an employee into his manager 
and f5 maps a manager's MGR# into his corresponding EMP#, then of 
course f4 / f5-i. So to take this interpretation, one must make 
f4 and f5 syntactically distinct (e.g., f5:MGR# -> EMP#_OF_MGF). 

As a third example, let f6:STOCK# -> STORE# and 
f7:STOCK#,STORE# -> QTY, Since the composition of ft and f7 is 
q3:STOCK# -> QTY, i+ must be (by our assumption) that the 
attribute STORE# in f7 is not needed. Rut suppose f6 maps a 
STOCK# into the STORE# of the store that is in charge of ordering 
that item and f7 maps the STOCK# of an item and the STORE# of the 
store in which it is being sold into the quantity on hand. In 
this case, g3 does not imply that STORE# is extraneous in f7. To 
prevent this syntactic inference from taking place, we must 
change an attribute name (e.g., f6:ST0CK# -> ORDERING_STORE#) . 

In each of these examples, a syntactic inference was 
either erroneous or misleading. In each case, we solved the 
problem by renaming an attribute to distinguish it from another 
attribute. This renaming essentially moves some semantic 
knowledge that we have about an FD onto the syntactic level, 
where it can bo used by the algebra of FDs. 

Specifying a set of FDs that can lead to no invalid 
syntactic inferences is clearly a difficult problem. For no 
syntactic check based only on the algebra of FDs can determine 
whether a given set of FDs satisfies the uniqueness assumption. 
Ye'-., if we are to make use of a formal algebra of FDs, we must 
make the assumption that all syntactic inferences are valid. If 
we had an automated semantic analyzer that could judge the 
validi'-y of each syntactic inference, then we could use it as a 
sieve to toss out invalid inferences. Unfortunately, such a 
semantic analyzer is well beyond the state of the art. So, we 
will add to our assumption of the validity of syntactic 
inferences the proviso that all syntactic inferences arc (or at 
least can be) checked for semantic validity. If an inference is 
invalid, it can either result in renaming of some attributes or 
be simply rejected. 

Third normal form is a strictly syntactic property that 
is governed by the algebra of FDs. In this work we give a 
complete account of mapping from FDs into a 3NF schema, giver 
that Armstrong's axioms and the uniqueness assumption are 
accepted. Given Armstrong's completeness proof, we believe those 
assumptions to be quite reasonable in modelling relational data 
bases. k'e are not attacking the problem of how to judge the 
semantic validity of syntactic inferences. Semantic problems of 



16 

this type are not well understood and seem to be more 
than the syntactic problem of determining 3NF. Their 
remains a matter for further research. 

difficult 
solution 

1.5 A WORE SOPHISTICATED SYNTHESIS PROCEDURE 

1.5.1 A Description of the Algorithm 

The simple synthesis procedure o 
problems because the rules for composing FDs 
main difficulty is that redundant FDs t 
synthesized schema create extra attributes 
unnormalized connections among attributes, 
nonredundant covering of the given set of FDs 
problems can be alleviated. In fig. 2, 
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for example, f2 is 
in a nonredundant 

the 3NF violation of 

Finding a nonredundant covering is not sufficient to 
avoid problem FDs such as f6 in fig, 2. This further problem can 
be eliminated by excising extraneous attributes from the left 
sides of FDs. An attribute Ai is extraneous in 
g:A1,,..,Ap -> B, if AI,...,Ai-1,Ait 1,...,Ap 
Eliminating extraneous attributes helps to 
dependencies and superkeys that are not keys, 
fig. 2. 

a n F D g e G, 
-> B is in G-*-. 
avoid partial 

such as in RU of 

If two relations have keys that are functionally 
dependent upon each other (i.e., are equivalent), then the two 
r<=‘lations can be merged together. This can be accomplished in the 
synthesis procedure by merging together two groups of FDs if 
their left sides are functionally equivalent. For example, g2 and 
g3 in fig. 2 can be merged into a single group. 

Algorithm 1 (see figure 3) includes the above 
improvements. In the seguel, we will refer to Algorithm 1 with 
step 4 excised as Algorithm la. 

A linear time algorithm for testing membership in the 
closure of a set of FDs is presented in part II. 
shown there that using this procedure, one 
Algorithm 1 with a time bound of 0(L2), where L is 
the string encoding the given set of FDs. 

1.5.2 Com_pleteness of the Synthesized Schema 

It is also 
can implement 

length of the 

A schema 
the FDs embodied in 
Algorithm 1 synthesizes 

S represents a set of FDs F if the closure of 
the relations of S equals F+. To show that 

a schema that represents the given FDs, 
consider a set of FDs F that is given as input to Algorithm 1, 
Let H be the set of FDs that result from eliminating extraneous 
attributes and redundant FDs. Clearly, H+ still equals F'*-. Let 
S be a schema synthesized from 
FDs embodied in S and H* = F+, S 

F. Since H 
represents 

is exactly the set of 
F. 
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Figure 3 

Synthesizir.q a Relational ^hema from a Set of FDs 

1. (Flimina^e extraneous attributes) Let F be the given set of 
FDs. Eliminate extraneous attributes from the left side of 
each FD in F, producing the set G. An attribute is 
extraneous if its elimination does not alter the closure of 
the set of FDs. 

2. (Find covering) Find a nonredundant covering, H, of G, 

3. (Partition) Partition H into groups such that all of the FDs 
in each group have identical left sides, 

4. (Merge eguivalent keys) For each pair of groups, say HI and 
H2, with left sides X and Y respectively, merge HI and H2 
together if there is a bijection X <-> Y in H+, 

5. (Construct relations) For each group, construct a relation 
consisting of all the attributes appearing in that group. 
Each set of attributes that appears on the left side of any 
FD in the group is a key of the relation, (Step 1 guarantees 
that no such set contains any extra attributes.) All keys 
found by this algorithm will be called synthesized. The set 
of constructed relations constitutes a schema for the given 
set of FDs. 
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We would like to be certain that the extension of every 
FD in the given set F can be retrieved from the extension of the 
synthesized schema S using relational algebra. We will argue 
that this follows from the fact that S represents F, 

Consider some f:X -> A 6 F. We begin by noting that 
extraneous attributes in X can be ignored. That is, if the 
extension of an FD f*:X* -> A where X* c X can be retrieved from 
the extension of S, then since f can be obtained from f’ simply 
by augmentation, we can treat f’ to be the same FD as f. Now, 
since S represents F, there is a derivation for f based on the 
set of FDs, H, that are embodied in S. In part II, we show that 
if f* has no extraneous attributes, then it can be derived from H 
using only the pseudotransivity axiom. Since an application of 
psuedotransitivity corresponds exactly to a join in relational 
algebra, the derivation for f* from H can be simulated by a 
sequence of joins on the extension of the relations of S. In 
this way, the extension of every f e F can he retrieved from the 
extension of S using relational algebra. That is, our notion of 
•representation* satisfies the intuition that all relationships 
specified in the given set of FDs are actually retrievable from 
the extension of the synthesized schema. 

T.5.3 Nonfunctional gelation ships 

We introduced a special notation for representing 
nonfunctional relationships in our input FDs. We must now make 
sure that these FDs behave in the expected way. 

If X -> 9 is in the set of FDs given to Algorithm 1, 
then either X -> 9 or Y -> 9, where Y <-> X, appears in the 
schema synthesized by the algorithm. This is a consequence of 
the following lemma, which is proved in part II. Thus, the 
nonfunctional relationships appear in the schema in nearly the 
same form that they are specified in the given set of FDs, 

Lemma 2; If X -> 9 is in a set of FDs G, then for any 
nonredundant covering H of G, either X -> 9 is in H or Y -> 9 is 
in H, where X -> Y and Y -> X. n 

By the above lemma, the 9 attributes, which were 
invented to permit the representation of nonfunctional 
relationships, always appear in the synthesized schema. How are 
they interpreted? To see this, consider the following example. 
Suppose two nonfunctional relationships were specified in the 
given set of FDs: f1:AB -> 91 and f2:AB -> 92. (Notice again 
that the uniqueness assumption of FDs does not force uniqueness 
of nonfunctional relationships between A and E.) Step 4 of 
Algorithm 1 merges these two FDs into a single group, yielding a 
relation F. (A^B,91,92) ,. In order to distinguish whether a given 
pair of values for A and E satisfy f1, f2, or both f1 and f2, the 
91 and 92 attributes must be retained. For example, <a, b, 0, 
1> e F means a,b satisfies f2 but not f1. Notice that if there 
is only one nonfunctional relationship among a set of attributes, 
then the 9 attribute can generally be dropped, since this problem 
of distinguishing among relationships disappears. For example. 
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if only f1 were present, then it is customary only to include 
<a,b> pairs that are related under f1; a tuple <a,b,0> would 
normally not be included in the extension. Therefore, in this 
case, the 0 attribute would be dropped altogether. 

1.6 THIFD NOPMAL FOEM SCHEMAS 

1.6.1 Introduction 

In this section we show under what conditions various 
synthesized relations are in 3NF. We begin by showing tha+ 
Algorithm la (i.e,. Algorithm. 1 without step U) always produces a 
3NF schema. We th^^n examine A.lgorithra 1. A property of 
derivations of nonprime attributes is introduced and shown to be 
a sufficient condition for Algorithm 1 to produce a schema in 
3NF. Unfortunately, there are cases of FDs that do not satisfy 
this property and therefore can lead to relations with transitive 
dependencies. One such example is presented and is shown to oe a 
counterexample to a theorem given by Delobel and Casey. 

1.6.2 A1 c[orithn _1 a Schemas 

To prove that every relation synthesized by Algorithm la 
is in 3NF, we show that a transitive dependency implies the 
existence of a redundant FD in the nonredundant covering. We will 
use lemma 1 (cf, section h,1) to show the existence of an FD that 
creates the contradiction. Lemma 1 will be used in this way in 
all succeeding 3NF proofs. 

Theorem _1: Let F. (A1 , . . , , An ) be a relation synthesized from the 
set of FDs F using Algorithm 1a. Then no nonprime attribute of F 
is transitively dependent upon any key of R. That is, F is in 
3 N F. 

£122^ Suppose Ai is nonprime and is transitively dependent upon 
a key, K, of F. (K need not be synthesized.) That is, there is an 
X c fA1,...,An} such that K -> X, X /> K, and X -> Ai are in F+, 
and Ai is not in X. 

We first observe that Ai is transitively dependent upon 
the synthesized key of F, Let Z be the key of E that appears on 
the left side of the FDs that were used in synthesizing F. 
Clearly, Z -> X is in F+. Furthermore, X /> Z. For if X -> Z, 
thf^n X -> Z and Z -> K would imply X -> K, contradicting X /> K 
in th“ original transitive dependency. Hence, Z -> X, X /> Z, and 
X -> Ai is also a transitive dependency. 

Let H bo the nonredundant covering of G computed in 
Algorithm la. We will.now show that Z -> Ai, which appears in H, 
is redundant. To do this, it is sufficient to show that Z -> X 
and X -> Ai can both he derived from H - [Z->Ai}. 

Since the only FDs used in synthesizing R are of the 
form Z -> Aj, it must he that Z -> A is in H for all A S X. 
Since Ai is not in X, Z -> A is in H - (Z -> Ai} for all A € X. 
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Suppose there is a derivation for X -> Ai in H that uses 
Z -> Ai. Then, by lemma 1 we have X -> Z. But this violates X /: 
Z in the transitive dependency. So X -> Ai must be derivable 
without using Z -> Ai, 

Since Z -> X and X -> Ai can both be derived from H - fZ 
-> Ai}, it must be that Z -> Ai is redundant in H, contradicting 
the fact that H is nonredundant. But this, in turn, must mean 
that the transitive dependency did not exist. n 

The above theorem was first presented by Hang and 
Wedekind [17], however their proof was incorrect [h]. In the 
proof, they only argued that the transitive dependency was 
derivable in H, not H-{Z->Ai}, In terms of the above proof, they 
claimed that if K -> X and X -> Ai is a transitive dependency, 
then K -> Ai is derivable by pseudotransitivity. This, they 
asserted, violates the fact that K -> Ai is in a nonredundant 
covering. However, the latter is only true if one can show that 
both K -> X and X -> Ai are derivable from the closure without 
using K -> Ai. For example, G = (A, -> B, B -> A, A -> C} is a set 
of FDs where A -> B and B -> C are in the closure but A -> C is 
not redundant, because B -> C cannot be derived from G without A 
-> C. In any case, their theorem was correct as stated, and the 
above argument fixes their proof, using lemma 1 and the important 
fact that X y> K in the transitive dependency. 

It is interesting to note that they did not eliminate 
superkeys in their version of Algorithm la. This was not an 
error, since they explicitly assu med that extraneous attributes 
did net exist on the left sides of FDs. However, one need not 
make this general assumption, since some extraneous attributes 
can be eliminated algorithmically. In fact, to be entirely 
consistent with the algebra of FDs, one must eliminate such 
extraneous attributes. Of course, not all such extraneous 
attributes can be eliminated in this way; many semantic errors 
must remain the user's responsibility for reasons discussed in 
section 4.2. 

One might expect the proof of Theorem 1 to generalize to 
schemas synthesized by Algorithm 1. Unfortunately, this is not 
the case. A schema that is not in 3NF can be synthesized by 
Algorithm 1, as shown in figure 4 (ii), In the next section we 
will add a further precondition that is sufficient to guarantee 
3NF for schemas produced by Algorithm 1. 

1.6.3 A Sufficient Condition for 3NF 

To gaurantee that no nonprime attribute is transitively 
df^per.dent upon any key of F, we will use the following property: 

An attribute A is said to satisfy property P in relation R if 
the following proposition holds; Let H be the nonredundant 
covering produced from step 2 of Algorithm 1. If K -> A is 
in H and K -> A is used in synthesizing R, then for any prime 
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attribute B of R, the FD K -> B can be derived without using 
K -> A (i.e. , can be derived in H - {K "> ■?'})• 

Property P is strictly a syntactic property of derivations of 
FPs, and to our knowledge has no semantic interpretation in terms 
of real world relationships. It is the weakest property we know 
of that is sufficient to guarantee that Algorithm 1 produces 3NF 
relations. The proof that property P is sufficient to guarantee 
3NF follows the same lines as the proof of theorem 1. 

Theorem 2; let P(A1,,.,,An) be one of the relations synthesized 
using Algorithm 1 from a set of FDs, F. If all nonprime 
attributes of R satisfy property P, then R is in 3NF. 

Proof Let Ai be a nonprime attribute of P that is transitively 
dependent upon some key Y of P, That is, there is a Z c 
(A1,.,.,An} such that Y -> Z, Z /> Y, and Z -> Ai with Ai not in 
Z. Let H be the nonredundant covering computed in Alg. 1 and let 
K be a key such that h:K -> Ai is in H, That is, h is an FD that 
brought Ai into R by Alg. 1. 

Since K is a key, K -> Z. Furthermore, Z /> K, For if 
Z -> K, then Z -> K and K -> Y implies Z -> Y, a contradiction. 
Sc, we have a new transitive dependency: K -> Z, Z /> K, and Z -> 
Ai. We want to show that K -> Z and Z -> Ai are in (H - [K -> 
Ai})+ to establish a contradiction that H is redundant. 

Let Z = [Bl,.,,,Em}. We distinguish two cases. If B-j 
is orime, then property P guarantees that K -> Bi is derivable 
without using K -> Ai. if Pj is not prime, then there is an FD 
K* -> Bj that brought Pj into R. Since K -> K' is derivable (by 
property P) from H - [K -> Ai} and K* -> Bj is in H -(K -> Ai}, 
we obtain that K -> Bj is derivable without using K -> Ai. 
Hence, K -> Z is in (H-fK->Ai})♦. 

Now, assume Z -> Ai uses K -> Ai in its derivation. 
Then by lemma 1, Z -> K, contradicting the transitive dependency. 
Hence, Z -> Ai is in (H - {K -> Ai})-*-. 

The FDs K -> Z and Z -> Ai are in (H - (K -> Ai})«-, 
establishing that H is redundant, a contradiction. Hence the 
transitive dependency could not have existed, a 

The need for property P arises from the merging of 
equivalent keys in s-^ep U of Algorithm 1, Suppose K1 and K2 are 
merged in step 4 because K1 <-> K2, and suppose K1 -> 7, Z /> K1, 
Z -> A is a transitive dependency in the synthesized relation. 
This transitive dependency would not exist if K1 and K2 were the 
keys of two separate relations, as would be the case using 
Algorithm la. One way the transitive dependency can arise is 
that there is a Zi e Z, with K2 -> Zi (and K1 -> A) in the 
nonredundant covering, but K1 -> Zi (and K2 -> A) not in the 
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Figure 4 

Examples of Violations of Property P 

FDs Schema Synthesized 

Algorithm 1, 

f1: XI,X2 -> A 

f2: C -> XI,X2 

f3: A,XI -> B 

fU: B,X2 -> C 

HI(X1^X2,C,A) 

F2(AxXl.,B) 

(from f1 f> f2) 

A does not satisfy property P, yet R1 is in 3NF. 

(i) 

g1: XI ,X2 -> A,D 

g2: C,D -> XI X2 

q3: A,XI -> B 

gU: B,x2 -> C 

gS: C -> A 

SI{Xl^X2,CiD,A) (from g1 & g2) 

S2 (A^X2,B) 

S3(B^X2,C) 

S4(C,A) 

SI is not in 2NF, since A is partially dependent 

upon the key CO. 

(ii) 
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covering. Thus, a relation must contain both K1 and K2 to 
manifest the transitive dependency. The FD K1 -> Z in the 
transitive dependency is a compostion of K1 -> K2 -> Z. If A. 
does not have property P, then K1 -> A may be necessary to obtain 
K1 -> K2, in which case K1 -> A need not be redundant (as it 
would be in Algorithm la). However, if A does have property P, 
then K1 -> K2 does not need K1 -> A, so K1 -> A is redundant, and 
we have the theorem. 

Consider the set of FPs in figure 4(i) which produces 
the relation R1(XJ_j.X2, C, A) via Algorithm 1. (The reader can 
check that XI,X2 -> C is in the closure of the given FDs.) The 
attribute A. is nonprime in R1 and does not satisfy property P, 
since the only way to derive XI,X2 -> C is using XI,X2 -> A. 
However, despite the violation of property ?, relation R1 is in 
3NF. Hence, property P is not a necessary condition for 3NF. 

Figure 4 (ii) presents an example of FDs that exhibit the 
same violation of property P as figure 4(i) but induce a partial 
(and, hence, a transitive) dependency. In terms of the above 
discussion regarding transitive dependencies, we have XI,X2 -> C, 
C /> XI,X2, and C -> A; but XI,X2 -> A is not redundant, since 
XI,X2 -> C needs XI,X2 -> A in its derivation. 

Property P affects one other published procedure that 
synthesizes relations from FDs. Delobel and Casey [10] claim that 
their decomposition procedure, which is in some sense comparable 
to our Algorithm 1, produces 3NF relations. Their claim, however, 
is incorrect in that the example in figure 4 (ii) falsifies their 
theorem. 

1.6,4 Putting delations into 3NF 

A violation of property P may induce a 3NF violation. 
Once a particular violation of 3NF is found, then to put the 
relation into 3NF the offending dependency must be removed. 
Conveniently enough, if a nonprime attribute is transitively 
dependent upon a key of a relation, then the attribute can simply 
be removed from the relation, and the resulting schema will still 
embody the same FDs. 

Theorem 3: Let Rk(A1,.,.,An) be a relation in a schema 
5= {P1,...,Rm) that was synthesized using Algorithm 1. Let H be 
the set of FDs embodied in S. Let Ai be an attribute of Rk that 
appears in none of Fk*s synthesized keys, and let Ai be 
transitively dependent upon a key of Rk, Suppose Ai is removed 
from Rk, resulting in a new relation Rk’ and, hence, a new schema 
S* = fR1 ,,,.,RkFm). Then the closure of the set of FDs 
embodied in S* equals H*. 

Suppose Ai is removed from Ek. Since Ai does not appear in 
any of the keys synthesized by A.lg. 1, its removal can only 
affect embodied FDs of the form f:X->Ai, where X is a synthesized 
key of Rk. Let H* be the set of FDs embodied in S'. If we show 
that all such f are in (H*)'-, then H'- = (H')+. 
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By the same argument used in the proofs of theorems 1 
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nt upon all of them. For each f of the 

Therefore, for each such X, X -> V, V /> 
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Since X -> V and V -> Ai are in (H')"*" 
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the FD X - > V is s till 
ence. each X -> V i s in 

m ust show that V - > Ai 
derivation. B ut this 
used to der ive V - > Ai, 
/> X in one of the 

thus f;X -> Ai is 

Theorem 3 provides us with a simple means of removing an 
unwanted transitive dependency. Namely, excise the offending 
attribute from the relation. The theorem guarantees that the 
resulting schema still represents the given set of FDs. 

That a transitiv 
rather surprising, since 
nonredundant. It would 
result in the loss of an 
from a nonredundant cover 
FEs to the covering in st 
explicitly embodied in th 
of two distinct FDs in th 
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, in fig. 4(ii) the FDs XI,X2 -> C,D and 
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chemas that are guaranteed to be in 
nt covering resulting from step 2 of 
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n step 4 of Alg. 1. Let h;Z -> Ai, h 
hat Ai appears in no synthesized key 
ely dependent upon a key of Rk. Then 
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result. Algorithm 2 (see figure 5), 

3NF schema. 
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Figure 5 

Algorithm 2 

Sinthesi2in£ a Relational Schema from a Set of FDs 

1 . (Eliminate extraneous attributes) Let F be the given set of 
FDs. Eliminate extraneous attributes from the left side of 
each FD in F, producing the set 0. An attribute is 
extraneous if its elimination does not alter the closure of 
the set of FDs. 

2. (Find covering) Find a nonredundant covering, H, of G. 

3. (Partition) Partition H into groups such that all of the FDs 
in each group have identical left sides. 

4. (Kerge equivalent keys) Let J = 0, For each pair of groups, 
say Hi and Hj, with left sides X and Y respectively, merge Hi 
and H2 together if there is a bijection X <-> Y in H^-. For 
each such bijection, add X -> Y and Y -> X to J. For each A 
€ Y if X -> A is in H, then delete it from H. Do the same 
for each Y -> B in H with B 8 X. 

5. (Eliminate transitive dependencies) Find an H* c H such that 
(H’+J)-*- = (H+J) + and no proper subset of H* has this 
property. Add each FD of J into its corresponding group of 
H • . 

6. (Construct relations) For each group, construct a relation 
consisting of all the attributes appearing in that group. 
Each set of attributes that appears on the left side of any 
FD in the group is a key of the relation. (Step 1 guarantees 
that no such set contains any extra attributes.) All keys 
found by this algorithm will be called synthesized. The set 
of constructed relations constitutes a schema for the given 
set of FDs. 
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Steps 1-4 of Algorithm 2 are effectively implemented as 
in Algorithm 1, Step 5 can be effectively implemented using the 
membership algorithm presented in part II. Algorithm 2 can then 
be implemented in the same 0(L2) time bound as Algorithm 1. For 
details see section II.4. 

1.7 PROOF CF MINIHALITY 

The purpose of this section is to examine the number of 
relations synthesized by Algorithm 2 (or 1) for a given set of 
FDs, compared with any other relational schema that represents 
those FDs. y We will show that ail nonredundant coverings 
generate the same number of relations, by showing the number of 
equivalence classes of synthesized keys to be the same across all 
nonredundant coverings of a given set of FDs. This will then 
i mply th a t the sc hemas sy nt he size 
t he n u mb er of rel ations s yn th esiz 
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Lemma 2 cannot be strengthened so that X=Y. 
one can have two nonredundant coverings with equivalent c 
such that the two coverings have different lef 
representing a key eguivalence class. For example, in f 
g3 and h3 have functionally equivalent left sides, sine 
DE; yet CFj'DE. 

That is, 
losu res, 
t sides 
igure 6 
e CF <-> 

Using lemma 3 and recognizing that Algorithm 2 
synthesizes a relation from each maximal group of FDs that have 
functionally equivalent left sides, we can now see that all 
nonredundant coverings of a given set of FDs produce the same 
number of relations by Algorithm 2. 
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Figure 6 

!I)i2 Equivalent Coverings with different Keys 

G = {q1:C -> D, 

g2:D -> C, 

g3:CE -> F} 

H = {h1:C -> D, 

h2:D -> C, 

h3;DE -> F} 

G and H ar® nonredundant and G + = H-*-, Yet g3 and h3 generate 

different relations. This is an example of lemma 3 where X/^Y. 
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'theorem 4: Let F be a set of FDs. Any two nonredundant coverings 
oT F^will produce the saae nuiber of relations via Algorithm 2. 

Proof Let G1 and G2 be two nonredundant coverings of F. By 
lemma 3, if an FD g:X -> A is in G1, then there is an h:Y -> B in 
G2 with X -> Y and Y -> X. Thus, for any group of FDs in G1 with 
functionally equivalent left sides, there must be exactly one 
such group in G2, namely, the one that has the same functionally 
equivalent left sides. Since each such group generates one 
relation, G1 and G2 must produce the same number of relations,n 

Theorem 4 states that all choices of nonredundant 
coverings are equally good in terms of number of relations 
synthesized. This is somewhat surprising in that it contradicts 
the intuition that perhaps a minimal-sized nonredundant covering 
would produce fewer relations than other larger nonredundant 
coverings. 

The theorem also shows that on the logical level there 
is not very much choice as to how to pick relations that cover 
the given set of FDs. Some of the decomposition approaches (e.g,, 
f10,15,17]) claim to allow the system to choose among a class of 
possible schemas, directing the choice by efficiency 
considerations. Since all coverings have the same set of 
equivalence classes of keys, the class of possible schemas is 
really quite small. Hence, if one is guided on the logical level 
by normalization considerations rather than by efficiency 
considerations, one arrives at a set of nearly identical possible 
schem as. 

From theorem 4, we can see that the number of relations 
generated by Algorithm 2 is minimal among all those that embody 
the same given set of FDs. This gives a complete characterization 
cf the optimal 3NF schemas discussed in [7], 

Corollary; Let S be a schema synthesized from a set of FDs F 
using Algorithm 2. Let S* be any schema representing a set of FDs 
G that covers F, Then |S»| > |S|, 

h c G be a nonredundant covering of F, Certainly H 
will generate, via Algorithm 2, no more relations than are in S*. 
Furthermore, by theorem 4, Algorithm 2 will generate the same 
number of relations from G as from F. Hence, 1S*| > 1S|, n 

1.8 CONCLOSICN 

The purpose of this part of the paper was to develop an 
algorithm for synthesizing a 3liF schema from a given set of FDs 
and to examine some properties of such schemas. The main results 
were: 

1. Certain simple algorithms for synthesizing schemas 
either produce too many relations or violate 3NF. 
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2. An algorithm that synthesizes £rovably 3NF schemas 
presented. The essential aspect of this algorithm 
that it eliminates as much redundancy as possible 
the given set of FDs. 

3. All nonredundant coverings produce the same numbe 
relations using this latter method. Hence, synthes 
schemas contain a minimal number of relations. 

This is the first successful attempt, to our hnowle 
of implementing Codd's normalization pcocedure [7] both prov 
and effectively. (Errors in two earlier similar attempts 
isolated.) Furthermore, by the corollary to theorem u, 
sythesized relations satisfy Codd's optimality criterion - 
other schema covering the same FDs has fewer relations. 
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P^EI II III problem 

II.1 INTRODUCTION 

Re have presented in part I an 
synthesizing 3NF relational schemas from FDs, Th 
the algorithm depends on whether it can 
efficiently. It turns out that the problems of 
attribute in a left side of an FD is extraneous 
given set of FDs is redundant are instances 
problem -- to decide if a given FD is in the cl 
set of FDs. We call this latter problem the membership 

algorithm f or 
e useful ness of 

be imp lerae nted 
deciding if an 
or if an FD in a 
of the gen eral 
osure of a q iven 

problem. 

The memb e rsh ip problem ari ses w henever t he a Igebra o f FD s is 

used, e.g .» i n the synthesis algori thm, in t he con text of ke y 
f indi ng etc. In this part of t he paper we pres ent an e ff ic ien^ 

a Igor ithm for the solution of th e m embership problem and show how 
i t ca n be use d in an implemen tation of the sy nthe sis algo rith m. 

I n section 2 we in t r od uce the notion of a de ri va tion 
tree as a mod el for derivatio ns in the algebr a of FDs. H G p rove 
scmo pro pert ies of derivation tree s and, in part icular, we p rove 
the 1 emma s wh ich were used in part I without pr oo f. A de riva tion 
t ree is essentially a graph rep re sentation of a derivat ion. It 
is tr ue t hat one can discuss derive tions with out usi ng de riva tion 
trees • Howe ver, derivation tree s are coc eptu all y sim pie. are 
easy to man ipulate and th eir u se simpl i f ie s the pr oof s 
con si dera bly. 

In section 3 we present the algori th m for the solu tion 
of th e me mber ship problem and prove that it w or ks in line ar t ime. 
It i s k nown that the alge bra of FDs is cl osel y r elate d to the 
propo sit i onal calculus. He e xplore this re la ti onship to show 
that the algorithm can al so be used to f ind tau tolog ies in a 
restr icte d cl ass of propositi onal calculus form ula s, w i th the 
same tim e b ound. In secti on h w e present an i mpl ement atio n of 
the s y nth esis algorithm using the m embership algo rit hffl as a b asic 
step, (Jn d er this implementation th e synthesi s algor ithm work s in 
quadratic time. 

IT.2 DERIVATION TREES 

II.2.1 Derivation Trees as a Model for Derivations 

Armstrong [1] proved that, given the FDs X -> E1,...,X 
-> Bk, the FD X -> can be derived using the axioms A1, 
A2, A3. It is trivial that each of the FDs X -> B1,...,X -> Bk 
is derivable from X ->B1,...,Bk. Thus, the FD X -> R1,...,Bk is 
equivalent to the set {X ->E1,.,,,X -> Bk). In this section we 
will regard an FD of the form X -> Bl,...,Bk merely as a 
representation of the FDs X -> B1,...,X -> Bk. 

Let X be a set of attributes, let G be a set of FDs over 
X, and let q:B1,..,,Bk -> C be an FD over X. If g € G-*-, then 
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there is a sequence of applications of axioms A1, A2, and A3 on G 
that yields g. In this section we will develop a graph model, 
called a derivation tree, for such a sequence of applications of 
the axioms. 

Let G be a set of FDs. G-based derivation trees (abbr. 
G-based DT) are formally defined as follows: 

1. If C is an attribute, then the labelled node C is a G- 
based DT. 

2. If T is a G-based DT with C as a leaf node, and 
f:B1,.,.,Bra -> C is an FD in G, then the tree constructed 
from T by adding B1,...,Bm as children of the leaf node C is 
also a G-based DT, 

The derivation tree is a simple model for the successive 
composition of FDs by pseudotransitivity {this is formalized 
below), A sample derivation tree construction is given in figure 
7. 

A DT is characterized by its root, by its leaf set and 
by the FDs that appear in it. We will abbreviate the expression 
’’a DT whose leaf set is contained by (A1,..,,An}” by ”an 
fA1,...,An}-DT". If T is an X-DT rooted at A then we call it a 
"derivation tree for the FD X -> A". (This terminology will be 
justified by theorem 5 below.) 

The following lemma is an important step towards a 
formal characterization of the connection between derivation 
trees and derivations of FDs. It is a formal restatement, using 
DTs, of lemma 1 which was used extensively in proving the main 
theorems of part I. 

L£]!li!l§. if* T be a G-based derivation tree. Let X be a 
nonempty subset of the nodes of T and let Y be the set of all 
attributes that appear as leaves of T. Then Y -> X is in G+. 

£122^ Consider first the case that X is simply the root node. 
This sublemma can be proved by induction on the number of FDs 
that are added to the DT (i.e., applications of (2) above). This 
follows directly since each such addition preserves the desired 
property that the root is functionally dependent upon the set of 
leaves by virtue of the psuedotransitivity rule. 

Now suppose Xi € X is any internal node of T. Since Xi 
roots a Y-DT, by the above sublemma we have Y -> Xi, By the 
observation at the beqining of the section, if Y -> Xi for all Xi 
€ X, then Y -> X, completing the proof, n 

To make the DT model complete with respect to 
Armstrong's axioms we have to consider axioms A1 (reflexivity) 
and A2 (augmentation) as well, Fxcept for FDs of the form X->X, 

) 
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Figure 7 

b Sample Derivation 

Given: G = {g1:AD->C; q2:C->D; g2:DE->F; f4:A->E} 

Show: f:AB -> F € G<- 

FD fJsed Derivation Current FD 

ilk i]li§ Ste£ Tree Construction Re££esented 

the Tree 

q2 

gi 

g3 F 

1 1 
D E 

g4 F 
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DA -> F 
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A 
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any FD that can be derived with reflexivity and 
psuedotransitivity can also be derived without reflexivity simply 
by eliminating all the applications of axiom A1. Therefore, we 
may assume without loss of generality that reflexivity is not 
used in derivations except for deriving FDs of the form f:X->X. 
Similiarly, in a DT, reflexivity corresponds to taking a leaf 
node, making a copy of it, and connecting the copy as a child of 
the original leaf. Clearly, this rule can add no new nodes to the 
leaf set of a DT, and hence is basically a null operation and 
need not be included in the definition of a DT. The FDs of the 
form X -> X are handled by part (1) of the DT definition. 

Augmentation corresponds to the addition of extra leaf 
nodes connected ■♦■o an internal node of the dT. All of the 
children of any node that was added by augmentation could 
themselves have been added by augmentation. Consider a DT in 
which augmentation was used to produce what is now a non-leaf 
node, E, of the tree. One can eliminate E from the tree by 
replacing it by all of its descendants that are leaves. Doing 
this to all internal nodes that were produced by augmentation 
yields a DT in which all applications of augmentation produce 
leaves. Similiarly, one application of augmentation at the very 
last step of a derivation is all that is needed to derive any 
derivable FD, Therefore, we do not need to use augmentation in 
DTs; after a DT is constructed we can simply add any attribute to 
the left side of the FD it represents. This leads us to the 
following theorem for the completeness of DTs. 

Theorem 5: For a given FD g:X -> C and a set of FDs G, g e G-*- if 
and only if there is a G-based X-DT, T, rooted at C, 

^1221 Let T be a G-based X-DT rooted at C. T represents an FD 
X' -> C in G+ where X’ c X. Hence, by lemma 4 and augmentation, 
g € G+. To prove the converse, we know that if g 6 G'*', then there 
is a sequence of (say) N applications of Armstrong's axioms 
yielding g from G. From the above discussion, we can assume there 
are no applications of reflexivity in the sequence, and that 
applications of augmentation are all postponed to the last step. 
Thus, the first N-1 steps are all applications of 
pseudotransitivity and can be simulated by a G-based X-DT rooted 
at C, n 

Py the theorem, DTs serve as a model for derivations of 
FDs in which the right side is a single attribute. However, to 
show that X->yi,..Yk is derivable, it is sufficient to construct 
derivation trees for X->Y1,...,X->Yk. Thus, the concept of a DT 
is general enough for our needs. 

11,2.2 Additional Properties of Derivation Trees 

Hsinq theorem 5 and lemma 4, we can now prove lemmas 1 
and 2 which were stated in Part I without formal proofs. 
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1 section T.4.1): Let G be a set of FDs, and let g:X 
-> Y be an FB in G, If h:V -> W is in G<- and g is used for some 
derivation of h from G*, then V -> X is in G-»-. 

££221 Without loss of generality we may assume that W is a 
single attribute. If h e G-*- and g is used in some derivation of 
h, then there is a G-based V-DT, T, rooted at W in which g 
appears. Every attribute of X is a node of T. Hence, we can 
apply lemma 4 to obtain V -> X. n 

The proof of lemma 2 uses lemma 1 and the fact that each 
6 attribute appears in only one FB. 

Lemma 2 (cf. section 1.5.3): If X -> 9 is in a set of FDs G, 
then for any ncnredundant covering H of G, either X -> 9 is in F 
or Y -> 0 is in H, where Y -> X and X -> Y. 

Proof If X -> 9 is in H, then we are done, so assume not. Since 
H covers G, there must be a derivation for X -> 9 from H. Le^- Y 
-> 0 be the root FD of an H-based derivation tree for X -> 0. By 
l=^mma 1, X -> Y. To show Y -> X, we examine G-*-. In G, X -> © is 
the only FD containing 9. Thus, any derivation for any FD in G* 
with 9 on the right side must use X -> 9 as the root FD. In 
particular, X -> 0 is the root FD of any derivation for Y -> e 
from G. Hence, by lemma 1, Y -> X. a 

A priori, derivation trees can be arbitrarily large. 
The follwing lemma states that, for all practical purposes, we 
can restrict our attention to '’small” trees. The rationale 
behind the lemma underlies our work in the next section. The 
lemma is essentially the same as a well known result about 
derivation trees in the theory of context free languages. 

Lemma 5: If g € G-*- then there exists a G-based derivation tree 
for g, T, such that in T no path from the root to a leaf contains 
more than one occurrence of any attribute. 

Proof Suppose g € G-*- and let T1 be a G-based derivation tree for 
g. If T1 satisfies the condition of the lemma, then T = T1 and 
we are done. Otherwise, let us look at some path {A1,...,Ak), 
where A1 is the root and Ak is a leaf, such that the path 
contains at least two occurrences of some attribute A.. 

Let Ai and Aj be two occurrences of A where i < j. If 
we excise from T1 the subtree rooted at Ai (=A) and replace it by 
the subtree rooted at Aj (=A.) , then we obtain a tree T2 such 
that: 

1. All FDs used in T2 belong to G. 

2. The set of leaves of T2 is a subset of the set of leaves 
of T1 . 

3. T2 and T1 have the same root. 



U, T2 has fewer nodes than T1. 

Therefore, T2 is a G-based derivation tree for g and is smaller 
than T1. 

This process of replacing subtrees by smaller subtrees 
can be continued as long as the trees produced do not satisfy the 
condition of the lemma. Since these trees contain fewer and 
fewer nodes, the process must terminate. The last tree produced 
by the process satisfies the condition and is the reguir'=‘d tree 
T. n 

II. 3 A LINEAF TIME f!i;PlBEHSHIP ALGORITHM 

II.3. 1 Overview of the Membership Problem 

The membership Problem for a set G of FDs is: Given an 
FD g, decide if g e G+. In this section we present an algorithm 
that solves the problem in time proportional to the size of G. 
In the following we assume, without loss of generality, that the 
right side of g is a single attribute. 

Since g S G+ if and only if there exists a G-based 
derivation tree for g, one obvious way to solve the problem is to 
try to find such a derivation tree or, at leas-*-, prove that one 
exists. From lemma 5 it follows that a search for such a 
derivation tree must terminate. For any set G of FDs, the number 
of attributes in G is fini+e and, therefore, the number of G- 
based derivation trees satisfying the condition of lemma 5 is 
finite. Given g, one can decide if g e G-*- by enumerating these 
trees and checking each one to see if it is a derivation tree for 
g. However, the number of these trees may be guite large and 
this enumeration algorithm may be too time consuming. 

A more feasible approach to the problem is to try to 
construct a derivation tree for g step by step. While we may 
occasionally make a mistake by trying an FD that is not used in a 
DT for g, if the number of such mistakes is not too large then 
the resulting algorithm can be guite efficient. In r2] a bottom- 
up algorithm for constructing a DT for g is presented tha+- works 
in time roughly proportional to the square of the size of G. Ir 
the next subsection, we present an improved version of this 
algorithm that works in time linearly proportional to the size of 
G. 

II.3.2 The Algorithm 

Let G = fg1,...,gn) be a set of FDs involving 
attributes from the set [A1,...,Am}. We assume that G is given 
as a string of pairs where each pair represents an FD and 
consists of a left side and a right side. Each side is a 
sequence of attributes. Attributes are represented as numbers in 
the se^-. {1,...,m}. The length of the string representing G will 
be denoted by |G 1 . 
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Let -> C be given where (B1,.,.,Bk,C) c 
(;a1 ,. . .,Am]. To check if g 6 we try to compute the set of 
attributes that are functionally dependent upon B1,...,Bk in G. 
Then, g € G-*- if and only if C is in this set. This can be done 
as follows. 

We use a set variable, DEPEND, to hold attributes that 
are functionally dependent upon B1,...,Bk. Initially, we set 
DEPEND to {B1,...,Ek} as, clearly, each Ri is functionally 
dependent on this set (by reflexivity and augmentation). Given 
the set DEPEND, we look for an FD in G such that its left side is 
contained in DEPEND but its right side is net. Since every 
attribute on its left side is functionally dependent upon 
B1,..,,Bk, so is also, by pseudotransitivity, every attribute on 
its right side. Therefore, the attributes on its right side are 
added to DEPEND. (Conceptually, we start with DEPEND containing 
the leaf set of a DT for g. Each time we find a node whose 
children are all in DEPEND we add the node to DEPEND.) This 
operation is iterated until no new attributes to be added arc 
found. Then DEPEND contains all attributes that label nodes of 
fB1,...,Bk}-DTs and g e G+ if and only if C € DEPEND. The method 
is formally implemented as Algorithm 3, see figure 8. (For 
brevity, we use in the algorithm the abbreviations LS, FS for 
left side and right side, respectively.) 

To analyze the time complexity of the algorithm we note 
that in each iteration of the OUTER loop (except when the final 
iteration results in FOOND = FALSE) at least one attribute is 
added to DEPEND, In the worst case, the number of iterations of 
OUTER may be close to m. In any such iteration, the INNER loop 
scans the input string G. Therefore, in the worst case, the 
total time spent by the algorithm may be proportional to mlG|. 
(Actually, it seems that even more time is reguired. However, in 
a clever implementation this time bound can be achieved. We will 
not go into the details now, as we will present a more efficient 
algorithm.) He will now try to improve the algorithm so as to 
reduce this time bound. 

The algorithm is obviously inefficient. First, we note 
that, when an FD gi satisfies the condition in INNER, its right 
side is added to DEPEND, The values assumed by DEPEND form a 
monotonically increasing sequence of sets; so gi will not satisfy 
the condition a second time and it need not be checked in future 
iterations. Another problem is the fact that each attribute on 
the left side of each FD is checked in each iteration of OUTFR. 
Now, once an attribute on the left side of an FD is known to be 
in DEPEND, it is redundant to check repeatedly this attribute's 
membership in DEPEND. 

These two problems can be solved by appropriate changes 
to the algorithm. The first problem was actually solved in the 
algorithm presented in f2]; the second can be solved similiarly. 
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Figure 8 

ALGORITHM 3 

Deciding the Menil’££ski.£ ££2]2i£® 

INPUT: A set G of FDs and an FD g:31,...,Bk -> C. 

OUTPUT: 'yes* if g S G+, ‘no’ if G -e G+. 

/* Data structures ’*'/ 

DEPEND: The set of all attributes found to be dependent 
on {E1,...,Pk} so far. 

(FLAG, FOUND): Boolean variables; 

/♦ Initialize ♦/ 

DEPEND = {E1, . . . , Bk} ; 
FLAG = TRUE; 

/♦ Build up the set DEPEND */ 

OUTER: do while (FLAG); 

FOUND = FALSE; 

INNER: do for each gi € G; 

if (LS (gi) c DEPEND 5 
ES(gi) ^c DEPEND) 

then do; 
add RS(qi) to DEPEND; 
FOUND = TRUE; 

end ; 

end INNER; 

FLAG = FOUND; 

end OUTER; 

/♦ Print results */ 

P PINT: if (C e DEPEND) 
then print 'yes'; 
else print 'no'; 
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However, even with these two changes, the worst case time bound 
would still be 0(ni|G|). The reason is that these problems are 
special cases of a more general problem, namely, that in each 
iteration of OUTER all of G is scanned although only a small part 
of G is actually involved in any operation. Thus, if G contains 
FDs whose left side contain attributes which are not derivable 
from then these FDs will be scanned in each 
iteration. ^^Iso, even in the algorithm presented in f 2 ], the 
left side of an FD that eventually does appear in a DT for g is 
unnecessarily scanned many times before its right side is added 
to DEPEND. 

Our problem then is to find a way to ch 
algorithm such that the following holds: In each itera 
OUTER an FD is visited only if there is some operati 
performed on it in that iteration, and only the attribut 
are actually involved in the operation are visited. 

The basic operation on an attribute on a left si 
FD is to "mark” it as belonging to DEPEND. The basic o 
on an FD is to add its right side to DEPEND if its left 
contained in DEPEND. I^s new attributes are added to DE 
each iteration, it seems reasonable to visit an FD onl 
left side contains an occurrence of an attribute that wa 
to DEPEND in the previous iteration. Each such occur 
"marked'* and never visited again (and, if all attributes 
corresponding left side are marked, then the right side 
to DEPEND and is also never visited again) . The questio 
can we arrange to visit only these occurrences of attri 
the left sides of FDs; that is, how can we locate them 
scanning all of G? 
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To solve this problem, we propose to use linked lists 
that are threaded through the input string. For each attribute 
in {A 1,...,Am}, we have a linked list of all occurrences of that 
attribute on left sides of FDs. Thus, each attribute on the left 
side of an FD appears in excatly one such list. After an 
attribute is added to DEPEND we can follow the links on its 
corresponding list, "mark" each occurrence of the attribute on 
the linked list as being derivable from B1,,..,Bk, and check if 
the FD in which it appears now satisfies the condition in INNER. 

The left side of an FD is in DEPEND if and only if all 
of the attributes on that left side are marked. To determine this 
latter condition, we maintain a counter for each FD. The counter 
holds the number of attributes that are on the left side of the 
FD and do not yet belong to DEPEND. "Marking" an occurrence of 
an attribute in an FD then reduces to decrementing the counter of 
that FD; checking whether the left side of the FD is contained 
in DEPEND reduces to comparing the value in the counter to zero. 
If the counter can be accessed directly from the occurrence of 
the attriubte, then these two operations can be done in a 
constant number of steps. 

Notice that each occurrence of an attribute in the input 
string is visited at most once, since an attribute is added to 
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Figure 9 

ALGORITHM 4 

i2®£i^i£.3 ill® ££2^1^51 

INPUT: A set G of FDs and an FD -> C. 

orjTPOT: 'yes* if g e G-^, 'no* if g -.e G+. 

/* Data Structures */ 

FD(1:n): FD (i) is a structure describing the i-th FD, 
consisting of an integer COUNTER and a FIGHT_SIDE 
containing an attribute, 

ATTRLIST (1:tn) : a singly-linked list of those FDs with Ai on their 
left hand sides. 

DEPEND: the set of all attributes found to be dependent 
upon {3l,.,.,Bk) so far. 

NEWDEFEND: the subset of DEPEND that has not yet been examined. 

/* Preprocess G to build ATTRLIST and FD */ 

dc for each gi € G; 

do for each Ai € LS<qi); 

add gi to ATTRLIST(j); 
increment COUNTER of FD (i) by 1; 

end ; 

set BIGHT_SIDE of FD(i) to be RS(gi); 

end; 
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Figure 9 - page 2 

/♦ si iil§ algorithm ♦/ 

/* Initialize ♦/ 

DEPEND = {B1 . ,Bk} ; 
NEWDEPEND = DEPEND; 

/♦ Build up the set DEPEND, ♦/ 

OUTER: do while (NEHDEPEND is not empty); 

remove an attribute from NEWDEPEND 
and assign it to the variable NEXT_TO_CHECK; 

INNER: do for each gi on ATTRL1ST(NEXT_TO_CHECK); 

decrement COUNTER of FD(i) 
if ((COUNTER of FD(i) = 0) 

do for each attribute A 

by 1 ; 
then 
in RIGHT__SIDF of FD (i) 

if (A -.e DEPEND) then 
add A to DEPEND and NEWDEPEND; 

end; 

end INNER; 

end OUTER; 

/* Print results */ 

PRINT : if (C e DEPEND) 
then print *yes' 
else print ‘no* 



DEPEND at most once. Attributes that are not derivable froir 
will not be visited at all. This solves all the 

problems mentioned above. Most important, though, is the fact 
that since each visit to an occurrence of an attribute takes a 
bounded number of steps and each occurrence is visited at most 
once, the algorithm takes time linearly proportional to IG). The 
algorithm is formally implemented as Algorithm 4, see figure 9. 

have assumed that the right side of g is a single 
attribute. This assumption was for simplicity of presentation 
only and is not essential to the algorithm. If the right side of 
g is C1,...,Cp then the only change needed is to check in the 
printing stage if C1,..,,Cp are elements of DEPEND. 

II.3.3 Ana iisis of Ik® Algorithm 

In this section we prove that .Algorithm 4 is correct and 
analyze its time complexity. 

The preprocessing step of the algorithm consists of a 
single scan of G. For each occurrence of an attribute, a 
constant number of steps is performed. Therefore, this part 
terminates and takes time OdGj). After termination of this part 
the following hold: 

1. 

2. 

For each gi 6? G 

a. The value of the CCUNTSS of FD(i) is equal to the 
number of attributes on the left side of gi. 

b. The set PIGHT_SIDE of FD (i) contains the attributes 
on the right side of gi. 

For each attribute Aj, each FD that contains Aj on its 
left side is on ATTFLIST(j). 

We now turn our attention to the second part -- the main 
body of the algorithm. Me present an informal proof that this 
part terminates and produces correct results. 

The sets DEPEND and NEHDEPEND are initialized to 
(E1,...,Bk}. The only other place that an attribute can be added 
to these sets is in the if-statement in the INNER loop. Since 
attributes are never deleted from DEPEND, it follows from the 
condition in the if-statement that an attribute can be added to 
these sets at most once. In each iteration of OUTER one 
attribute is removed from NEWDEPFND so the number of iterations 
is exactly the number of attributes added to the sets and is at 
most m. In any iteration of OUTER, the INNER loop has the form 
’’do for each element of a finite sot”, and must therefore 
terminate. From this it follows that the algorithm terminates 
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attributes on the left side of gi that either are not in DFPEND 
or are in the intersection of DEPEND and NEWDEPEND. This is 
obviously true at the time of the first test, since then DEPEND = 
NFHDEPEND and each COUNTER is equal to the number of attributes 
on the left side of the corresponding FD (see la. above). In an 
iteration of OUTER one attribute is removed from NEWDEPEND and 
the COUNTER of any FD that contains it on its left side is 
decremented; so the claim is true after the iteration. 

It is easy to show that each attribute added to DEPEND 
is dependent by G on B1,...,Bk. This is trivially true for 
B1,...,B)t. Any other attribute is added only if it appears on 
the right side of some gi and the COUNTER of FD(i) is 0, Py the 
above observation, this means that all attributes on the left 
side of gi have already been added to DEPEND and are therefore 
(by induction hypothesis) derivable from B1,..,,Bk, Thus the new 
attribute is also derivable from them. 

Finally, we show that all attributes that depend by G on 
B1,...,Bk will be in DEPEND when the algorithm terminates. We 
will use induction on the depth of derivation trees. For 
derivation trees of depth zero, we have to consider only 
B1,...,Bk and they are all in DEPEND. Given an attribute that 
has a derivation tree of depth i+1, we look at the root FD of the 
tree, g-j: D1 . .. Dp->E. The attributes D1,...,Dp all have 
derivation trees of depth < i. Therefore, each of these 
attributes is added to DEPEND. Now, when the last of these D's 
is removed from NEWDEPEND, the COUNTER of FD(j) will be set to 
zero so E will be added to DEPEND unless it is already there. 
This concludes the correctness proof. 

Having proved the correctness of the algorithm, we can 
now add a shortcut. When the attribute C is added to DEPEND, we 
exit from OUTER and proceed directly to the output step. 
Obviously, this can only lead to a faster algorithm. 

We have already seen that the preprocessing stage takes 
time proportional to |G|. In the main body of the algorithm each 
attribute in NEWDEPEND is removed exactly once. The processing 
in the corresponding iteration of OUTER consists of a constant 
number of steps performed for each occurrence of the attribute on 
a left side of an FD. Similiarly, the RIGHT_SIDE of FD(i) is 
visited at most once and then a constant number of steps is 
performed. Therefore, the algorithm works in time 0(IG|). (We 
have assumed that )g| < JG|.) 

While the worst case time of the main body of the 
algorithm is 0(|G|), this is not always the best estimate. If G 
contains many FDs that do not contain attributes derivable from 
Bl,...,Bk, then these FDs will not be visited at all. Also, the 
running time of the algorithm depends on the depth of derivation 
trees of g. If g has a shallow derivation tree, its right side 
will be added to DEPEND at an early stage and the algorithm will 
be faster. (It can be shown that all attributes that have G- 
based fB1,...,Bk)-derivation trees of depth < i are added to 
DEPEND before any attribute that has only derivation trees of 
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depth >i is added.) These considerations are of importance in 
cases where many membership tests based on one group of FDs are 
performed. Preprocessing can be done once and then only the body 
need be applied for each FD being tested. 

Theorem 6: Membership in the closure of a set of FDs can be 
tested in linear time. a 

P^MAPK He have presented here a bottom-up algorithm. We have 
also developed a linear time top-down algorithm. In principle, 
it works by a left-to-right depth-first expansion of the required 
DT, starting with the root. However, it is quite complicated and 
a description of it will not be given. 

II.3.4 An Algorithm for a Hestrieted Class of Tautoioqies 

It is known that there is a close relationship between 
the theory of FDs and the propositional calculus. This fact was 
originally observed by Delobel and Casey [10]. Faqin, in a recent 
paper [11], has given a clear statement of this relationship and 
presented two alternative proofs. We will now show that it 
follows from this relationship that tautologihood can be decided 
for a restricted class of propositional formulas (to be defined 
later) in linear time. 

In the following we use => as the implication symbol of 
the propositional calculus. Let N be the following mapping from 
FDs and sets of FDs to propositional formulas: 

For q;E1,...,Bk -> C1,.,.,Cp N (g) = B1S...&Bk => C15..,5Cp 

For G = (q1,...,qn} N (G) = N (g1)S.,.DN (gn) 

The relationship as stated by Fagin is: 

Theorem (Fagin [11]): For any FD g and for any set G of FDs, g e 
G+ if and only if N{g) is derivable in the propositional calculus 
from N (G) . 

Proofs can be found in [11]. We will sketch briefly the 
idea behind the first proof. The transformation N is essentially 
a translation of FDs into the language of the propositional 
calculus, Fagin showed that if Armstrong’s axioms are similiarly 
translated the result is a complete set of axioms for the 
propositional calculus. Therefore, a derivation of q from G, when 
translated, is a proof of N(g) from N(G) that uses these 
translated axioms. Similiarly, a proof of N (g) from N(G) which 
uses the translated axioms can be translated back to a derivation 
of q from G. D 

In the propositional calculus a formula A is derivable 
from a formula B if and only if the formula A => E is a 
tautology. Thus the theorem can be stated as follows: "g 9. G + 
if and only if N(G) => N(g) is a tautology”. It now follows that 
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to check if a fornula of the form N (G) => N(g) (for some G, q) is 
a tautology one can use Algorithm 4. One way of doing it is to 
translate the problem back into a membership problem. It is also 
easy to see that the algorithm can be applied directly to 
propositional formulas of that form. 

Let us denote the class of propositinal formulas in 
disjunctive normal form in which each disjunct includes at most 
one negated literal by DNF(l-neg). He now show that 
tautolcqihood of formulas in this class can be checked in linear 
time. 

Theorem 7: The tautology problem for DNF(l-neg) can be decided 
in time linearly proportional to the size of the input. 

Proof Let f be a given formula in DNF(l-neg). He first observe 
that if f contains a non-negated literal in each disjunct then f 
is not a tautology; it can be falsified by assigning the value 
FALSE to all the literals, Therfore , we assume that some 
disjuncts of f do not contain a non-negated literal. These 
disjuncts must then cosist of a single negated literal. He also 
assume that f contains at least one disjunct which consists of a 
single non-negated literal. (If there is no such disjunct , we 
can add one. For if C is a new literal that does not appear in f 
then f is a tautology if and only if C | f is a tautology.) 

Our strategy will be to transform f into an equivalent 
formula of the form N(G) => N (g) for suitable G and g. There are 
several cases to consider; 

1. Disjuncts that include both a negated literal and a non- 
negated literal. Let E1 &., . 8EkR-»D be such a disjunct. We 
replace it by the equivalent disjunct (EIF/, ..&Ek => D) 

2. Disjuncts that include at least two literals but no non- 
negated literal. These disjuncts cannot be transformed directly. 
Let ElS,.,&Ek be such a disjunct and let D be a new literal which 
does not appear in f. He replace the disjunct by E15. . .SEkfr-iD 
and add to f the disjunct consisting of the single literal D. 
Clearly, the new formula thus obtained is a tautology if and only 
if f is a tautology. Now E1F... 6 Ek6-»D can be replaced as in 1. 

3. Disjuncts consisting of a single negated or non-negated 
literal. Let these disjuncts be Cl | ,., j Cp ) -»B1 j ... j -^Bk. 
We replace them by the single equivalent disjunct P16,,.6Bk => 
CIS...SCp. 

when the above transformations are completed we have a 
formula of the form 

N(g) I -N(g1) I ... I -N(gn) 

for some g,g1,,,.,qn. This formula is equivalent to the formula 
N ( {g1,...,gn}) => N(g). Now, the algorithm can be applied to 
this formula. Since all the transformations described above can 
be performed in linear time, the theorem follows. n 
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Me have chosen a proof by way of reduction for ease of 
presentation only. The algorithm can be applied directly to 
formulas in DNF(l-neg), Some changes in the terminology used in 
the algorithm will be necessary; also, a consideration of the 
possible types of disjuncts will have to be incorporated in the 
algorithm. We leave it to the reader to rewrite the algorithm 
for DNF(1-neg). 
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II. 4 IMPLEMENTATION OF THE SYNTHESIS A^ORITHM 

IT . 4 . 1 Pl§21ocess i ng_ 

In this section we present an implementation of the 
synthesis algorithm. Algorithm 2 (cf. section 1.6.4), using the 
membership test as a basic operation. While this implementation 
seems to be natural and quite efficient, others are conceivable. 
In any case, the proofs of the properties of schemas synthesized 
by Algorithm 2 do not depend on how it is implmented. 

In the first two steps of the algorithm, extraneous 
attributes and redundant FDs are eliminated. Each time an 
attribute (or an FD) is eliminated, we obtain a new set of FDs. 
When the membership test is applied to this new set, the 
preprocessing has to be redone. However, the difference between 
the old set and the new set is quite small. It would be much more 
efficient if preprocessing is done only once and each time the 
set of FDs is changed, only the appropriate changes in its 
preprocessed form are performed. 

If, instead of singly-linked lists, we use doubl 
lists to connect all occurrences of each attribute 
eliminating an attribute can be done in a constant n 
steps. Eliminating an FD is done by eliminating all at 
on its left side. Thus, the total time spent in the f 
steps of the algorithm in eliminating attributes and FDs 
proportional to the number of attributes eliminated 
proportional to the size of the input in the worst case. 

rising the same (or almost the same) preprocessed input 
for several membership tests means that the counters will have to 
be reset for each test. This also can be done efficiently, e.g., 
by having two counters for each FD, one of which always contains 
the original value. In what follows we assume, therefore, that 
the input has been preprocessed once and for all. Each time an 
attribute (or an FD) is eliminated, the necessary local changes 
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are performed. To apply the membership test will mean to apply 
the main body of the membership algorithm. 

II.4.2 Impiemegtation 

Let f:A1,.../Ak -> B be an FD in F. The attribute hi is 
extraneous in f (cf. section 1.5.1) if A1,...,Ai-1, Ai+1,...,Ak 
-> E is in F-*-. The procedure for eliminating extraneous 
attributes is shown in figure 10. 

Note that during the execution of the IN group the left 
side of g changes dynamically. The loop is performed exactly 
once for each attriubte in the original left side of g. It is 
quite clear that each time an attriubte is eliminated from the 
left side of g, the closure of the resulting set of FDs is the 
same as Y*, (The FD g is replaced by g* such that g' is in G and 
q is derivable from q' by augmentation, therefore G-*- = (G - (g) u 
{g*})**) To prove the correctness of the algorithm it suffices to 
show that after it terminates, the left side of any g in G does 
net contain extraneous attributes. 

Suppose the left side of g after termination is 
A1,...,Ai and that Ai is extraneous. This means that A1,...,Ai- 
1,Ai+1,.. . ,Aj -> ES (g) is in G-*-. But then, when IN was executed 
for Ai, the left side contained A1,...,Ai-1,Ai+1,,..,Aj so Ai 
should have been eliminated -- a contradition. 

We use a similar procedure to implement the second step 
of Algorithm 2 — elimination of redundant FDs (see figure 11). 
Here again the membership test is performed once for each FD in 
the original set G and H changes dynamically. It is obvious that 
the closure remains the same throughout the execution of the 
procedure. Also, after termination of the procedure no h € H is 
redundant. If h € (H - {h})t then for any set H* containing H, k 
e (H' - {h})t, so h should have been eliminated when it was 
tested for redundancy. 

The implementation of step 3 (partition) is 
straightforward. ?!! left sides are arranged in a sequence and 
each one is compared to the left sides preceding it in the 
sequence. However, a more efficient implementation exists. It 
will be described in the next section. For step 4 (merge 
equivalent Iceys) , we again use the membership test to check if 
two given left sides are equivalent. For step 5 we can use the 
same procedure that was used for step 2. We first order the set 
H+J such that all elements of H come first and we perform the 
redundancy check only for elements of H. Implementation of step 
6 is also straightforward. 
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Figure 10 

I ffiplementation of Ste£ _1 of Algorithm 4 

Elimi^^atinq Extraneous Attributes 

input = F; 

G = F; 

OUT: do for each g e G; 

IN: do for each attribute A in LS (g) ; 

if (LS(g) - {A}) -> RS(g) is in G-^ 
then eliminate A from LS (g) ; 

end IN; 

end OUT; 

output G; 

Figure 11 

Iroglementation of ste£ 2 of algorithm 4 

Finding a Nonredundant Covering 

input = G 

H = G; 

do for each heH; 

if he (H - {h} ) + 
then H = H - {h} ; 

end; 

output H; 
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Having at most n groups generated in step 3, step 4 
consists of at most 0 (n) membership tests, so it takes tirn.p 
0(n|F|). In step 5 we perform at roost n membership tests, since 
only elements of H are tested. However, the test is based on the 
set H+J. Thus, to estimate the time spent in a membership test, 
we need an estimate of the size of J. 

The size of J depends on the way J is constructed in 
step 4. Let be an equivalence class, where the 
elements of the class are listed in the order in which they have 
been added to the class. Let us assume that each time we want to 
check if a given left side belongs to the class, we compare it to 
the last element added to the class. Then the FDs in J that 
correspond to this class are X1<->X2, X2<->X3,.... Any left side 
appears in at most two equivalences in J (e.g,, X2 appears in 
X1<“>X2 and in X2<”>X3). An equivalence X<->Y can be 
represented by the FDs X->Y and Y->X. Each left side of an FD in 
H appears in at most four such FDs and it follows that |J| = 
0 (|H|) = 0(|Fj) . 

Step 5 takes, then, 0(n|F|). Step 6 is free, if 
appropriate operations are performed in the previous steps, 
i.e., equivalence classes can be represented as relations when 
step 4 is performed and redundant attributes in these relations 
are excised in step 5. Thus, the total time spent in the 
algorithm is 

O(lFl) + 0(|FJ2) + 0{n|F|) + 0(nm) ♦ 0(nlF|) + 0(n|F|) 

= 0 (max(|F\?, n|F|, nm)) 

= 0(1F12) . 
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part III THE BCNF AND THE FINDING PPOBLEHS 

III•1 INTRODUCTION 

111.1.1 A Survey of the Results 

In the first two parts of this work we have exhibited 
the feasibility of the algorithmic approach to the problem of 
synthesizing 3NF schemas. We turn now to two related problems - 
Boyce Codd normal form and the existence of additional keys. In 
both cases , our results strongly suggest that efficient 
algorithms for the treatment of these problems do not exist. 

A new normal form, called Boyce-Codd normal form (abbr. 
BCNF), which is strictly stronger then 3NF was presented in [8]. 
We have seen that any set of FDs can be represented by a 3NF 
schema and there exists an algorithm that produces such a schema 
for any given set. We would like to know if similiar results 
hold for BCNF. That is, can any set of FDs be represented by a 
BCNF schema and can the synthesis algorithm or an extension 
thereof be used to produce BCNF schemas? These problems are 
treated in section 2. We show that BCNF violations are inherent 
in some sets of FDs; for these sets no BCNF schema exists. We 
also show that even when a BCNF schema exists for a given set of 
FDs, the algorithm may produce a schema which is not in BCNF, 
Finally, we prove that the problem whether there is a DCNF 
violation in a given relation (where a set of FDs is also given) 
is NP-complete. This is true even when it is known that the 
relation was produced by the synthesis algorithm from the given 
set of FDs. These results imply that extending the synthesis 
algorithm to produce a BCNF schema, even when such a schema does 
exist, is probably not computationally feasible. 

A relation in a schema contains one or more designated 
keys. These keys may be specified by the user or produced by the 
synthesis algorithm. In addition to these keys, other keys may 
exist in a relation by virtue of the given set of FDs. In 
section 3 we treat problems relating to such additional keys. We 
show that, given a set of FDs and a relation with some designated 
keys, there may exist in the relation additional keys. Again, 
this is true even when the relation and its keys are produced by 
the synthesis algorithm from the given FDs. We also prove that 
the problem of deciding whether an additional key exists in a 
given relation is NP-complete. As in the case of the BCNF 
violation, these results seem to imply that key finding is an 
inherently difficult problem. Finally, some results by Lucchesi 
and Osborne [1h], based on a restricted form of our model, are 
compared to the other results in the section. 

111.1.2 A Review of Definitions 

In order to give an adequate and precise treatment of 
the problems mentioned above we will review here some of the 
definitions from part I (see section 1.2). 



51 

A relational schema S consists of a finite set of 
relation names; for each relation is given the set of attributes 
that appear in it and one or more subsets of this set called 
•keys’. (He will explain later why the word key appears ir 
qoutes.) Given a relation B, we say that an FD:X->A is embodied 
in F if X is a given ’key* of R and A is any attribute of R. The 
set of FDs that are embodied in the schema S is the collection of 
all FDS which are embodied in relations of S. A schema S 
rgpresents a set F of FDs if the closure of the set of FDs 
embodied by S is equal to (cf, section 1.5,2). 

Given a relation E and a set of FDs F, a subset of the 
attributes of R is a sujperkey of R if for any attribute A in R, 
the FD K->A is in F-*-, A stiperkey K is a ke^ if it does not 
contain any proper subset that is also a superkey. 

If the relation R is part of a schema that represents 
the set of FDs F, then all given 'key’s of R are superkeys by 
definition. But they are not necessarily keys; they may contain 
extraneous attributes. By the results of part I, in any relation 
generated by the synthesis algorithm all 'key’s are actually 
keys, Furthemore, we note that the first step of the synthesis 
algorithm can be used as a procedure for eliminating extraneous 
attributes from superkeys and it can be applied to any relation. 
Therefore, we will assume that any 'key's given in a relation are 
actually keys, that is, that extraneous attributes have beer- 
eliminated . 

For our treatment of the problems in this part we do not 
require that a schema be given. If a set of FDs is given then it 
is possible to ask about a single relation if it is in BCNF. 
Similiarly, it is possible to ask if it contains additional keys. 
To summarize, we assume that the following is given: 

1. A set F of FDs. 

2, A relation R with some 'key's such that 

a. the set of FDs embodied in R is a subset of F+, and 

b. all 'key's given in E are keys, 

(Because of 2b. we will, from now on, omit the quotes from the 
word key.) In some cases we will construct a schema from the 
given set of FDs, This is done only to show that the 
corresponding result holds even if it is known that the relation 
and its keys have been produced by the synthesis algorithm. No 
use is made of the other relations in the schema, 

III.2 EOYCE-CODD NORMAL FORM 

III.2.1 Updates in BCNF Relations 

Third normal form was introduced to solve certain kinds 
of update anomalies and consistency difficulties among nonprime 
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It is easily seen that every BCNF relation is also in 
3NF. For if X -> Y, Y /> X, Y -> A were a transitive dependency 
in a BCNF relation, then Y -> A and Y /> X would be a violation 
of BCNF, On the other hand, not every 3NF relation is in BCNF. 

An example of a 3NF relation that is not in BCNF is 
POSTAL_DISTPICT (CITY, ADDRESS, POSTALCODE) where CITY,ADDRESS -> 
POSTALCODE and POSTALCODE -> CITY, The only two keys of 
POSTAL^DISTRICT are CITY,ADDRESS and POSTALCODE,ADDPESS. The 
relation POSTAL_DISTRICT is trivially in 3NF, since it has no 
ncnprime attributes. Yet ?OSTAL_DISTRICT is not in BCNF, since 
POSTAL_CODE -> CITY but POSTAL_CODE /> ADDRESS. Notice also that 
ADDRESS /> CITY, since an address (e.g., 10 Elm Street) could 
appear in more than one city. 
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One can look at BCNF as an attempt at making tuple 
updates completely independent. That is, since each tuple in a 
relation normally represents an object or relationship in the 
world (e.g,, see [16]), one would expect to be able to update any 
one tuple in a relation without regard to any other in that 
relation. The above example shows that this is not always 
possible in a 3NF relation. However, as we will now explain, it 
is always possible in a BCNF schema. 

Suppose we, want to change the values of some attributes 
in one tuple of a relation. Other tuples may be influenced by 
this update only if the following two conditions are met. The 
first condition is that a given combination of values for these 
attributes may appear in different tuples in the relation. (This 
is equivalent to saying that the set of attributes whose values 
we want to change is not a key of the relation.) Clearly, only 
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tuples in which these attributes have the same values as in the 
*new* tuple can be influenced by the update. The second 
condition is that this set of attributes determines another 
attribute in the relation (because then the update may violate 
this dependency). Now, in a ECNF relation, no set of attributes 
can satisfy both conditions, A set is either a key or it does 
not determine any other attribute. Therefore, tuple updates in a 
BCNF relation are independent. 

111.2.2 Some Negative Results 

In the first part of this report, we presented a fast 
algorithm for synthesizing a 3NF schema from a given set of FDs. 
In this section we will show why any similar approach to PCNF is 
very likely to fail. 

The main goal, then, is to find a BCNF relational schema 
that represents a given set of FDs. However, this goal is 
impossible to fulfill, since there are sets of FDs that cannot be 
represented by any BCNF schema. 

Lemma 6: There is a set of FDs that cannot be represented by any 
BCNF relational schema. 

Proof Let F = (AB -> C, C -> A} be a set of FDs. (These are 
exactly the FDs in POSTALDISTEICT, with A = CITY, B = ADDRESS, 
and C - POSTALCODE.) By a brute force examination of F*, it can 
be shown that there are no two FDs f and g in F+ that range over 
a nroper subset of {A,B,C} with f»g:AB -> C, Thus, the only 
relation that can embody AE -> C must be one that contains A, E, 
and C as attributes. Eut such a relation is not in BCNF, since C 
-> A but C /> B. Hence, any schema that embodies F violates 
BCNF. n 

It has been pointed out that a BCNF schema can be formed 
from which AB -> C and C -> A can be extracted [9], However, by 
lemma 6 any such method of extracting these FDs from the schema 
must involve information in addition to the knowledge of embodied 
FDs (e.g., that a particular join yields AE -> C as a result). 
That is, such a schema does not embody AB -> C and C -> A, in our 
formal sense. Yet we know of no published relational system that 
allows such additional information to be represented in the data 
definition language. Only the keys are known. Hence, our formal 
definition of embodiment closely models what is actually feasible 
in present-day relational systems. This means that some FDs 
always lead to BCNF violations and require a special mechanism ^o 
solve the integrity problems induced by such violations. 

The impact of lemma 6 is softened somewhat by the 
observation that sets of FDs which cannot be represented by BCNF 
schemas seem to be quite rare in modelling real world situations. 
What we would like to know is: In synthesizing a schema from a 
given set of FDs F, can we at least guarantee that if a BCNF 
schema that embodies a covering of F is possible, then our 
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Figure 12 

Two Coverings, Only One of which Violates BCNF 

FDs 

A -> B,C 

B,C -> A 

A,D -> E 

F -> C 

Relations 

R1 (A,BxC) 

P2 (A^D, E) 

R3 (E,C) 

FDs 

A ->B,C 

P,C -> A 

B,C,D -> E 

F -> C 

(b) 

Relations 

51 (A,Bj^C) 

52 (B^Cj^D,E) 

S3(E,C) 

In both cases the given sets of FDs are nonredundant. Also, they 

have the same closure. Yet, in the first case the synthesized 

schema is in BCNF, in the second case it is not. 



55 

synthesis algorithm will find it? That is, can be be sure to 
obtain a RCNF schema from algorithm 2 when such a schema is 
possible? Unfortunately, the answer is no. In figure 12, we 
present two nonredundant covering of a given set of FDs, where 
one covering results in a BCNF schema and the other does not. 
This shows that BCNF is not an invariant property of coverings; 
if step 2 of Algorithm 2 chooses the wrong covering, the result 
will violate BCNF. 

It is cone eiva ble tha t one c ould develop a m Gt ho d of 
f indi ng a non red undan t CO veri ng t ha t al wa ys choo ses a cove ring 
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a cov eri ng al gor i thm to t he c orre ct cho lie e in pol ynom ial ti me • 

Give n that the pr oble ffi of sy nthesizi ng a BCN F sc hem a 
s eems to be q uit e di f f ic ul t, pe rh aps w e shoul d s i mpl y a Ilow 

Igor ith m 2 to make mis ta ke s an d gene ra te BCNF viol atio ns w here 
they could have been avoided. Now, we are faced with the proble 
of examining each relation of the schema to check whether it i 
in BCNF. 

Checking whether a relation is in BCNF is clearly 
decidable. The membership algorithm can be used to check every 
subset of attributes in the relation to see if it functionally 
determines some but not all attributes in the relation. This 
algorithm, though, is very slow, since it requires checking an 
exponential number of sets of attributes. That a faster 
algorithm is not very likely to be found follows from theorem 8, 
which shows the BCNF detection problem to be NP-coraplete. 

Theorem 8: Given a set of attributes X, a set F of FDs over X, 
and a 3NF relation R over a subset of X, the question '‘does R 
violate RCNF” is NP-complete. The problem is NP-comolete ever, 
when it is known that F: is one of the relations produced by ♦:he 
synthesis algorithm from the set F. 

£^22^ problem is NP computable by nonde ter mini sticall y 
choosing a subset of the attributes of P. and verifying that this 
subset functionally determines some but not all attributes 
(i.e., verifying that R violated BCNF). To show the problem 
NP-difficult, we reduce the hitting set problem [13] to the BCNF 
violation problem. 

of E 
is 

The hitting set problem is formulated as follows: we 
are given a family {Vi} i=1,...,n of subsets of T = {t1,...,tr}. 
We have to decide if there exists a set W c T such that for each 
1<i<n the intersection of W with Vi contains exactly one element. 
The problem was proved to be NP-complete in [13]. 

We now show how to construct, in polynomial time, for a 
given instance of the hitting set problem a corresponding 
instance of the BCNF violation problem, such that the two 
instances have either both positive solutions or both negative 
solutions. 
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We construct the following set F of FDs: 

1. For each i, for each pair u1, u2 of elements in Ui and for 
each t € T, the set F contains the FD u1,u2 -> t, 

2. For each i, let xi be a new object* The set F contains the 
FD x1,...,xn -> t1, 

3. For each u e Ui, for each i, F contains the FD u -> x. 

Applying the synthesis algorithm to the set F, we obtain the 
following relations. From (1), we obtain a relation B1 that 
contains exactly the elements of T and in which the pairs of 
elements of any Ui are the synthesized keys. From (2), we obtain 
a relation E2 that contains x1,,..,xn and t1 and its synthesized 
key is x1,...,xn. From (3) we obtain relatons R3,.,,,Er+2, such 
that in Rj+2 the key is tj and it contains all xi such that tj e 
Ui. 

We prove now that R1 has a BCNF violation if and only if 
the hitting set problem has a positive solution. First, suppose 
W is a subset of T that intersects each Ui exactly once. Then W 
-> x1,...,xn follows from the FDs in (3), so applying the FD in 
(2) we obtain W -> t1 in the closure. Flowever, W does not 
contain a key of FI, since the only FDs that have t2,...,tn on 
the right hand side are those of (1) and W does not contain two 
elements of any Ui. Conversely, suppose R1 has a BCNF violation. 
Let Y c T be a subset of attributes of P. that derives some tk e T 
but not tj e T. Clearly, Y cannot contain any pair of elements 
of any Ui. The only way then to derive any element of T is by 
using x1,...,xn -> t1, which means that Y contains one element of 
atleasteachUiandisahitting set. 

Finally, we observe that the number of pairs of elements 
in T is r2, so the number of FDs we construct in (1) is at most 
r^. It follows easily that the instance of the BCNF violation 
problem is constructed in time proportional to a polynomial 
function of the size of the instance of the hitting set problem. 
The theorem follows. n 

To summarize the above results, we have: 

1. Not every set of FDs can be represented by a BCNF 
schema, 

2. Algorithm 2 does not necessarily synthesize a BCNF 
schema, even when such a schema is possible, and 

3. the problem of determining whether a relation violates 
BCNF is NP-complete. 

Together, these results strongly suggest that FDs are too strong 
a model to obtain BCNF schemas algorithmically. Perhaps a better 
approach is to develop a weaker model of real world 
relationships, a model whose additional structure (and weaker 
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modelling power) makes the detection of BCNF violations an easier 
problem. For any model that is strong enough to model FDs must 
manifest the above problems. 

III.3 KEY finding 

In this section we treat the problem of the possible 
existence of unknown keys. If the keys synthesized by Algorithm 
2 (i.e., the "synthesized keys”) for a particular relation always 
included all of the keys of the relation, then there would be no 
problem. However, a relation can have keys that are not 
synthesized by Algorithm 2. For example, given the set of FDs 
{AB->C, C->B}, the 3NF schema constructed by the synthesis 
algorithm contains the relations P1(A_tB,C) and P2(C,B). Clearly, 
AC is an additional key of FI, although it was not synthesized. 
Given that these additional keys exist, the question we would 
like to examine is: How difficult is it to find these keys? 

One approach to finding the keys of a relation is to 
check all subsets of the attributes in the relation starting, 
say, with subsets of one element, then subsets of two elements, 
etc. Since the number of such subsets grows very quickly with 
the size of the relation, it would be helpful to discover a 
condition that will tell us that no more subsets have to be 
checked, since all of the keys have already been found. One such 
condition might be that if all known keys have cardinality less 
than some integer n, and there are no keys of cardinality n, then 
there are no more keys to check. This condition would allow us 
to stop building up subsets when all the subsets of a particular 
cardinality turn out to yield no new keys. However, this 
condition fails on the example in figure 13, In this example, 
the attributes X1,X2,X3,X4 together constitute a key of F1, ye+ 
this key is not synthesized by the synthesis algorithm. Even 
though there are no additional keys of cardinality less than four 
(and there are no keys at all of cardinality 3), this additional 
key exists. It is also easy to generalize the example to an 
arbitrarily large cardinality gap (i.e., no keys of cardinality 
greater than two and less than n, for arbitrary n, yet one key of 
cardinality n+1). This cardinality condition, and others like 
it, fail for a fundamental reason. 

Let the additional key problem be defined as follows: 
Given a relation F with a set of keys and a set of FDs 
(satisfying the conditions 1, 2a, 2b of section III. 1.2), does P 
contain an additional key? 

Theorem 9: The additional key problem is NP-complete. 
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Figure 13 

A Cardinality Gap for Keys 

K -> XI, X2, X3, X4 

LI, L2 -> K 

XI “> *^1, P!5 

X2 -> M2, K6 

X3 -> M3, M7 

X4 -> M4, MR 

Ml,M2,M3,M4 -> Li 

M5,M6,M7,M8 -> L2 

(i) a given set of FDs 

(K# Itlilil, XI, X2, X3, X4) 

82 (XI., Ml, M5) 

R3(X2, M2, M6) 

P4(X3, M3, M7) 

R5 (X4, M4, MB) 

B6 {2X.M 3^M 4 , LI) 

R7 (M5.LMx.il2xMr ^2) 

(ii) The relations synthesized from the above FDs. 

In the relation R1, X1,X2,X3,X4 is a non-synthesized 

key, even though there are no keys of cardinality three. 
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Since their one-relation model is a special case of the multiple- 
relation model, these problems are also NP-complete in the latter 
model. However, it should be noted that these problems are NP- 
ccmplete even if we restrict ourselves only to multiple-relation 
schemas synthesized by Algorithm 2. This is not a direct 
consequence of their results. To see this, let us consider ♦•he 
prime attribute problem for synthesized schemas. 

Suppose we are given a set of FDs G over the attributes 
Al,...,Am. Let R(Al,...,An) where n<m be one of the relations 
synthesized from G by the synthesis algorithm. We want to know 
if A1 is prime in F, We map this problem to a similiar problem 
for the one-relationa1 model. To do this, we add a new attribute 
D and we add the FD D -> Al,...,Am and the FD A1,...,An -> D to 
G, If we apply the synthesis algorithm to the new set of FDs, 
there will be one additional relation containing the attributes 
D,A1,...,Am. The keys for this relation will be D and any key of 
R. Thus, A1 is prime in B iff it is prime in this relation. out 

this relation contains all the attributes in the schema so, by 
the Lucchesi and Osborne result, the problem is NP-complete. A 
similiar reduction can be used for the key of cardinality m 
problem. 

The results in this section strongly sugaest tha^- key 
finding is an inherently difficult problem. From theorem 9 it 
follows that if NP -•= P then there is no algorithm that lists all 
keys in time polynomial in the size of the relation and the set 
of FDs, It is true that even if NP -•= P none of the results 
implies that an algorithm that lists all keys of a relation in 
time polynomial in the number of keys does not exist. It the 
difficulty of the additional key problem lies in the cases where 
the number of additional keys is exponential in the size of the 
relation. However, we conjecture that such an algorithm does not 
exist. 
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CONCLUSION 
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Our results about the Eoyce-Codd normal form and about 
the key finding problems have been all negative. We have shown 
that the problems of whether a schema is in Boyce-Codd normal 
form and of whether a relation contains additional keys are NP- 
comolete. On the basis of these and other results we argued 
(though we could not prove) that an efficient algorithm that 
produces Eoyce-Codd normal form schemas and an efficient 
algorithm that lists all keys of a relation do not exist. 

In view of the synthesis algorithm, the concept of 
functional dependency has proven to be a useful tool for the 
construction of relational schemas. Recently, generalizations of 
this concept have been suggested. We believe that functional 
dependencies (and their generalizations) may prove to be useful 
in the treatment of other problems of relational data base 
systems. 
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